Math 166 - Week in Review \#8

Section 5.1 - Introduction to Matrices

- The order (size) of a matrix is always number of rows \times number of columns.
- $c_{i j}$ represents the entry of the matrix C in row i and column j.
- To add and subtract matrices, they must be the same size.
- When adding or subtracting matrices, add or subtract corresponding entries.
- A scalar product is computed by multiplying each entry of a matrix by a scalar (a number).
- Transpose - The rows of the matrix A become the columns of A^{T}.
- The zero matrix of order $m \times n$ is the matrix O with m rows and n columns, all of whose entries are zero.

Section 5.2 - Multiplication of Matrices

- The matrix product $A B$ can be computed only if the number of columns of A equals the number of rows of B.
- If $C=A B$, then $c_{i j}$ is computed by multiplying the $i^{\text {th }}$ row of A by the $j^{\text {th }}$ column of B.
- Identity Matrix - Denoted by I_{n}, the identity matrix is the $n \times n$ matrix with 1 's down the main diagonal (from upper left corner to lower right corner) and 0 's for all other entries.
- If A is $m \times n$, then $A I_{n}=A$ and $I_{m} A=A$.
- In general, matrix multiplication is not commutative.

1. Let $A=\left[\begin{array}{cc}4 & x \\ 3 & -7\end{array}\right], \quad B=\left[\begin{array}{ccc}2 & -3 & 0 \\ 8 & k & -6\end{array}\right], \quad C=\left[\begin{array}{cc}4 & -5 \\ 0 & b \\ 7 & -10\end{array}\right]$, and $D=\left[\begin{array}{ccc}5 & -1 & 3 a \\ 2 & 6 & 4\end{array}\right]$. Compute each of the following:
(a) $B+3 D$
(b) $2 C+B$
(c) $4 D-3 C^{T}$
(d) $4 a_{21}-2 c_{32}+7 d_{13}$
(e) $D B$
(f) $B^{T} D A$
(g) $C D^{T}$
(h) $B B^{T}$
(i) A^{2}
2. Solve for x and y :

$$
3\left[\begin{array}{cc}
2 & x \\
5 y & -1
\end{array}\right]-\left[\begin{array}{cc}
-6 & 1 \\
3 y & -5
\end{array}\right]^{T}=\left[\begin{array}{cc}
12 & -7 \\
-2 x & 2
\end{array}\right]
$$

3. The times (in minutes) required for assembling, testing, and packaging large and small capacity food processors are shown in the following table:

	Assembling	Testing	Packaging
Large	45	15	10
Small	30	10	5

(a) Define a matrix T that summarizes the above data.
(b) Let $M=\left[\begin{array}{cc}100 & 200\end{array}\right]$ represent the number of large and small food processors ordered, respectively. Find $M T$ and explain the meaning of its entries.
(c) If assembling costs $\$ 3$ per minute, testing costs $\$ 1$ per minute, and packaging costs $\$ 2$ per minute, find a matrix C that, when multiplied with T, gives the total cost for making each size of food processor.
4. If $A=\left[\begin{array}{ccc}4 & 0 & k \\ -9 & m & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-3 & j & 8 \\ 5 & n & -6\end{array}\right]$, and if $C=B^{T} A$, then find
(a) c_{32}
(b) c_{13}
5. Acme Flowers is a florist shop with three locations-one in San Antonio (SA), one in Dallas (D), and one in Houston (H). Each shop makes three standard arrangments A, B, and C. The matrix M below shows the number of each type of arrangement ordered in the month of January. The matrix N below shows the number of roses (R), carnations (C), and chrysanthemums (M) used in each type of arrangment.

$$
\left.\left.M=\begin{array}{c}
\\
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array} \begin{array}{ccc}
\mathrm{SA} & \mathrm{D} & \mathrm{H} \\
18 & 20 & 16 \\
12 & 17 & 10 \\
13 & 11 & 9
\end{array}\right] \quad N=\begin{array}{l}
\\
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array} \begin{array}{rcc}
\mathrm{R} & \mathrm{C} & \mathrm{M} \\
5 & 10 & 2 \\
7 & 6 & 3 \\
9 & 12 & 5
\end{array}\right]
$$

How should these matrices be multiplied to produce a matrix T that gives the total number of each type of flower needed at each location to meet January's orders?

