Math 166 - Week in Review #1

Sections L.1 and L.2 - Statements, Connectives, and Truth Tables

- A statement is a declarative sentence that can be classified as either true or false, but not both.
- Simple statements are statements expressing a single complete thought.
- We use the lowercase letters *p*, *q*, *r*, etc. to denote simple statements.
- Statements that contain at least one logical connective are called **compound statements**.
- A <u>conjunction</u> is a statement of the form "p and q" and is represented symbolically by p∧q.
 The conjunction p∧q is true if *both* p and q are true; it is false otherwise.
- A <u>disjunction</u> is a statement of the form "p or q" and is represented symbolically by p∨q.
 The disjunction p∨q is **false** if *both* p and q are false; it is true in all other cases.
- An *exclusive* disjunction is a statement of the form "*p* or *q*" and is represented symbolically by $p \lor q$.

The disjunction $p \lor q$ is **false** if *both* p and q are false AND it is **false** if both p and q are true; it is true only when exactly one of p and q is true.

- A <u>negation</u> is a statement of the form "not p" and is represented symbolically by ~ p. The statement ~ p is true if p is false and vice versa.
- A statement is called a **tautology** if its truth value is always *true*, no matter what the truth values of the simple component statements are.
- A statement is called a **contradiction** if its truth value is always *false*, no matter what the truth values of the simple component statements are.

Section 1.1 - Introduction to Sets

- A set is a well-defined collection of objects.
- The objects in a set are called the *elements* (or members) of the set.
- Example of roster notation: $A = \{a, e, i, o, u\}$
- Example of set-builder notation: $B = \{x | x \text{ is a student at Texas A&M} \}$
- Two sets are equal if and only if they have exactly the same elements.
- If every element of a set *A* is also an element of a set *B*, then we say that *A* is a *subset* of *B* and write $A \subseteq B$.
- If $A \subseteq B$ but $A \neq B$, then we say A is a proper subset of B and write $A \subset B$.
- The set that contains no elements is called the empty set and is denoted by \emptyset . (NOTE: {} = \emptyset , *but* { \emptyset } $\neq \emptyset$.)
- The *union* of two sets A and B, written $A \cup B$, is the set of all elements that belong either to A or to B or to both.
- The *intersection* of two sets A and B, written $A \cap B$, is the set of elements that A and B have in common.
- Two sets *A* and *B* are said to be **disjoint** if they have no elements in common, i.e., if $A \cap B = \emptyset$.
- If U is a universal set and A is a subset of U, then the set of all elements in U that are not in A is called the *complement* of A and is denoted A^c .

• <u>De Morgan's Laws</u> - Let A and B be sets. Then

 $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

- 1. Determine which of the following are statements.
 - (a) Do you know when the review starts?
 - (b) What a surprise!
 - (c) She wore a black suit to the meeting.
 - (d) The number 4 is an odd number.
 - (e) x 5 = 4
 - (f) Some of guests ate cake.
 - (g) Please take off your hat before entering the MSC.
- 2. Write the negation of the following statements.
 - (a) Bob will arrive before 8 p.m.
 - (b) All of the pencils have been sharpened.
 - (c) None of the sodas are cold.
- 3. Consider the following statements: p: Sally speaks Italian; q: Sally speaks French; r: Sally lives in Greece.
 - (a) Express the compound statement, "Sally speaks Italian and French, but she lives in Greece," symbolically.
 - (b) Express the compound statement, "Sally lives in Greece, or she does not speak both Italian and French," symbolically.
 - (c) Write the statement $(p \lor q) \land r$ in English.
 - (d) Write the statement $\sim r \wedge \sim (p \lor q)$ in English.
- 4. Construct a truth table for each of the following. Also, state whether the given statement is a tautology, a contradiction, or neither.
 - (a) $\sim (\sim p \lor \sim q)$
 - (b) $(p \lor \sim q) \land q$
 - (c) $\sim q \wedge \sim (p \lor r)$
 - (d) $\sim (p \wedge q) \vee (q \wedge \sim r)$
- 5. Let *U* be the set of all A&M students. Define *D*, *A*, and *C* as follows: $D = \{x \in U | x \text{ watches Disney movies}\};$ $A = \{x \in U | x \text{ watches action movies}\}; C = \{x \in U | x \text{ watches comedy movies}\}$
 - (a) Describe each of the following sets in words.
 - i. $A \cup C$
 - ii. $D \cap C \cap A^c$
 - iii. $D \cup A \cup C$
 - iv. $C \cap (D \cup A)$
 - (b) Write each of the following using set notation.
 - i. The set of all A&M students who watch comedy movies but not Disney movies.
 - ii. The set of all A&M students who watch only comedies of the three types of movies listed.

- iii. The set of all A&M students who watch Disney movies or do not watch action movies.
- 6. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 5, 10\}$, $B = \{1, 3, 5, 7, 9\}$, and $C = \{2, 4, 6, 10\}$. Find each of the following.
 - (a) $A \cup B$
 - (b) $B \cap C$
 - (c) C^c
 - (d) $A \cap (B \cup C)$
 - (e) $(A \cup C)^c \cup B$
 - (f) How many subsets does C have?
 - (g) How many proper subsets does C have?
 - (h) Are A and C disjoint sets?
 - (i) Are *B* and *C* disjoint sets?
- 7. Use set-builder notation to describe the collection of all history majors at Texas A&M University.
- 8. Write the set $\{x | x \text{ is a letter in the word ABRACADABRA}\}$ in roster notation.
- 9. Let $U = \{a, b, c, d, e, f, g, h, i\}$, $A = \{a, c, h, i\}$, $B = \{b, c, d\}$, $C = \{a, b, c, d, e, i\}$, and $D = \{d, b, c\}$. Use these sets to determine if the following are true or false.
 - (a) TRUE FALSE $A \subseteq C$
 - (b) TRUE FALSE $B \subset C$
 - (c) TRUE FALSE $D \subset B$
 - (d) TRUE FALSE $\emptyset \subseteq A$
 - (e) TRUE FALSE $\{c\} \in A$
 - (f) TRUE FALSE $d \in C$
 - (g) TRUE FALSE $C \cup C^c = U$
 - (h) TRUE FALSE $A \cap A^c = 0$
 - (i) TRUE FALSE $(B \cup B^c)^c = \emptyset$
- 10. Draw a Venn diagram and shade each of the following.
 - (a) $A \cap B \cap C$
 - (b) $A \cup (B \cap C^c)$
 - (c) $A \cup (B \cap C)^c$
 - (d) $(A \cap C)^c$