Find the values of A and B such that these functions will be continuous for all real numbers.

1. $f(x)= \begin{cases}A x^{2}-3, & \text { if } x \leq 2 \\ A x+2, & \text { if } x>2\end{cases}$
2. $f(x)= \begin{cases}A^{2} x, & \text { if } x<1 \\ 3 A x-2, & \text { if } x \geq 1\end{cases}$
3. $f(x)= \begin{cases}4 x, & \text { if } x \leq-1 \\ A x+B, & \text { if }-1<x<2 \\ -5 x, & \text { if } x \geq 2\end{cases}$
4. $f(x)= \begin{cases}x^{2}, & \text { if } x<-2 \\ A x^{2}+x+1, & \text { if }-2 \leq x \leq 2 \\ B x^{2}+2, & \text { if } x>2\end{cases}$
\qquad
Solutions
We want $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$ so that $f(x)$ will be continuous.
5. We want $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$ so that $f(x)$ will be continuous.

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} A x^{2}-3=\lim _{x \rightarrow 2^{+}} A x+2 \\
& 4 A-3=2 A+2 \\
& 2 A=5 \\
& A=2.5
\end{aligned}
$$

2. We want $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$ so that $f(x)$ will be continuous.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} A^{2} x=\lim _{x \rightarrow 1^{+}} 3 A x-2 \\
& A^{2}=3 A-2 \\
& A^{2}-3 A+2=0 \\
& (A-2)(A-1)=0 \\
& A=2 \text { or } A=1
\end{aligned}
$$

3. We want $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)$ and $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$ so that $f(x)$ will be continuous.

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{-}} 4 x=\lim _{x \rightarrow-1^{+}} A x+B \\
& -4=-A+B
\end{aligned}
$$

$\lim _{x \rightarrow 2^{-}} A x+B=\lim _{x \rightarrow 2^{+}}-5 x$
$2 A+B=-10$
now solve the system of equations to get the solutions. (solve one equation for a letter and substitute into the other equation.)
Answer: $A=-2$ and $B=-6$
4. We want $\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)$ and $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$ so that $f(x)$ will be continuous.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} x^{2}=\lim _{x \rightarrow-2^{+}} A x^{2}+x+1 \\
& 4=4 A-2+1 \\
& 5=4 A \\
& A=1.25
\end{aligned}
$$

$\lim _{x \rightarrow 2^{-}} A x^{2}+x+1=\lim _{x \rightarrow 2^{+}} B x^{2}+2$
$4 A+2+1=4 B+2$
$4(1.25)+2+1-2=4 B$
$4 B=6$
$B=1.5$

