Math 131

Supplementary problems #2 --- Logarithmic Functions

1. Solve for x:

(a)
$$\log x = 2$$

(b)
$$\ln x = -\frac{3}{4}$$

$$(c) 3\log_3 x = 5$$

(d)
$$5 \cdot 10^{5x} = 3$$

(e)
$$3 \cdot 10^{2-5x} = 4$$

(f)
$$e^{x^2} = 4$$

(g)
$$2 \cdot e^{3x-1} = 1$$

(h)
$$2 \cdot 3^{2x} = 1$$

(i)
$$\log x^2 = 9$$

2. Simply:

(a)
$$\log 10^4$$

(b)
$$10^{\log 2\pi}$$

(c)
$$\log \frac{1}{\sqrt{10}}$$

(d)
$$e^{3\ln 2}$$

(e)
$$e^{0.5\ln 9}$$

(f)
$$\sqrt{3^{\log_3 2}}$$

3. Write the following quantity in terms of log x, log y, log z, ln x, ln y, and ln z.

(a)
$$\log(x^2 \sqrt{y} \cdot z)$$

(b)
$$\log \sqrt{xyz}$$

(c)
$$\log \frac{\sqrt{x} \cdot 10^y}{z}$$

(d)
$$\ln \frac{e^x y^2}{\sqrt{z}}$$

(e)
$$\ln(x^2 \cdot \sqrt[5]{y^4} \cdot z)$$

(f)
$$\ln \frac{x^5}{\sqrt{y \cdot z^2}}$$

4. Write the given quantity as one logarithm.

(a)
$$2\log x + \log y$$

(b)
$$2\log x - \log y$$

(c)
$$\frac{1}{2}\log x - \frac{1}{3}\log y$$

(d)
$$2\log x - \frac{1}{2}\log y + \log z$$
 (e) $\sqrt{2}\ln x - \ln y$

(e)
$$\sqrt{2} \ln x - \ln y$$

(f)
$$3 \ln x + \ln y - \frac{1}{3} \ln z$$

5. An individual deposits \$2,000 into account with an annual rate of 6% compounded annually and \$1,000 with an annual rate 9% compounded annually. How long will it take for the amount in the second account to equal the amount in the first account?

6. A population grows according to $P(t) = P_0 e^t$, where t is measured in years. How long before the population triples?

Answers:

1.

- (a) 100
- (b) .4724
- (c) 6.24
- (d) .0444
- (e) .375
- $(f) \pm 1.177$
- (g) .1023
- (h) -.315
- (i) ± 31622.78

2.

- (a) 4
- (b) 2π
- (c) .5
- (d) 8
- (e) 3
- (f) $\sqrt{2}$

3.

- (a) $2\log x + \frac{1}{2}\log y + \log z$
- (b) $\frac{1}{2}(\log x + \log y + \log z)$
- (c) $\frac{1}{2}\log x + y \log z$
- (d) $x + 2 \ln y \frac{1}{2} \ln z$
- (e) $2 \ln x + \frac{4}{5} \ln y + \ln z$
- (f) $5 \ln x \frac{1}{2} \ln y \ln z$

4.

- (a) $\log(x^2 y)$ (b) $\log \frac{x^2}{y}$
- (c) $\log \frac{\sqrt{x}}{\sqrt[3]{y}}$ (d) $\log \frac{x^2 z}{\sqrt{y}}$
- (e) $\ln \frac{x^{\sqrt{2}}}{y}$ (f) $\ln \frac{x^3 y}{\sqrt[3]{7}}$
- 5. 24.8 years
- 6. 1.0986 years