Section 16.4: Additional Problems

1. Evaluate $\oint_{\partial D} y^{2} d x+3 x y d y$, where D is the region in the upper half-plane between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$. Assume the region is bounded by a positively oriented curve.
2. Evaluate the line integral shown below where C is the path From the point $(0,0)$ to the point $(2,4)$ along the function $y=x^{2}$ and then from the point $(2,4)$ back to the point $(0,0)$ along the path $y=2 x$

$$
\int_{C} 5 x y d x+x^{3} d y
$$

3. Use Green's Theorem to find the area bounded between $y=2 x^{2}$ and $y=4 x$. Assume that there is a positive orientation.
