Section 13.3: Additional Problems

- 1. Let $\mathbf{r}(t) = \langle 5 t, 4 3t, 3t \rangle$ and P(4, 1, 3)
 - (a) Find the arc length function for the curve measured from the point P in the direction of increasing t.
 - (b) Reparameterize the curve with respect to the arc length starting from P.
 - (c) Find the point 4 units along the curve (in the direction of increasing t) from P.
- 2. Let C be the curve of intersection of the parabolic cylinder $x^2 = 2y$ and the surface 3z = xy. Find the exact length of C from the origin to the point (6, 18, 36)
- 3. Find the arc length function for $\mathbf{r}(t) = \langle e^t, e^t \sin(t), e^t \cos(t) \rangle$ from the point (1, 0, 1) in the direction of increasing t.
- 4. Find the curvature of $\mathbf{r}(t) = \langle t^3, t^2, t \rangle$ at a general point and then at (8,4,2).