Section 13.3: Additional Problems

1. Let $\mathbf{r}(t)=\langle 5-t, 4-3 t, 3 t\rangle$ and $P(4,1,3)$
(a) Find the arc length function for the curve measured from the point P in the direction of increasing t.
(b) Reparameterize the curve with respect to the arc length starting from P.
(c) Find the point 4 units along the curve (in the direction of increasing t) from P.
2. Let C be the curve of intersection of the parabolic cylinder $x^{2}=2 y$ and the surface $3 z=x y$. Find the exact length of C from the origin to the point $(6,18,36)$
3. Find the arc length function for $\mathbf{r}(t)=\left\langle e^{t}, e^{t} \sin (t), e^{t} \cos (t)\right\rangle$ from the point $(1,0,1)$ in the direction of increasing t.
4. Find the curvature of $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ at a general point and then at $(8,4,2)$.
