Section 16.7: Surface Integrals

Definition: If S is parametrized by $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$, then the surface integral of f over the surface S is
$\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{v}}\right| d A$
where D is a region in the $u v$-plane.

Application: If the function is the density at the points of the surface then the surface integral over S computes the mass of the surface.
mass: $m=\iint_{S} \rho(x, y, z) d S$
Center of mass:
$\bar{x}=\frac{1}{m} \iint_{S} x \rho(x, y, z) d S, \quad \bar{y}=\frac{1}{m} \iint_{S} y \rho(x, y, z) d S, \quad \bar{z}=\frac{1}{m} \iint_{S} z \rho(x, y, z) d S$

Example: Evaluate $\iint_{S} x z d S$ where S is the part of the plane $3 x+2 y+z=6$ in the first octant.

Example: Compute $\iint_{S} y^{2} z^{2} d S$ where S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$.
$x=r \cos \theta$
$y=r \sin \theta$
$z=\sqrt{r^{2}}=r$
$r(r, \theta)=\langle r \cos \theta, r \sin \theta, r\rangle$
$r_{r} \times r_{\theta}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 1 \\ -r \sin \theta & r \cos \theta & 0\end{array}\right|=\langle-r \cos \theta,-r \sin \theta, r\rangle$
$\left|r_{r} \times r_{\theta}\right|=\sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta+r^{2}}=\sqrt{r^{2}+r^{2}}=\sqrt{2 r^{2}}=r \sqrt{2}$
$\iint_{S} y^{2} z^{2} d S=\int_{\theta=0}^{2 \pi} \int_{r=1}^{2} r^{2} \sin ^{2}(\theta) r^{2} r \sqrt{2} d r d \theta=\ldots \frac{21 \pi \sqrt{2}}{2}$

Example: Compute $\iint_{S} y^{2} z^{2} d S$ where S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$.

Using $x=x \quad y=y \quad z=\sqrt{x^{2}+y^{2}}$
$r(x, y)=\left\langle x, y, \sqrt{x^{2}+y^{2}}\right\rangle$
$r_{x} \times r_{y}=\left\langle\frac{-x}{\sqrt{x^{2}+y^{2}}}, \frac{-y}{\sqrt{x^{2}+y^{2}}}, 1\right\rangle$
$\left|r_{x} \times r_{y}\right|=\sqrt{\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}+1}=\sqrt{2}$
$\iint_{S} y^{2} z^{2} d S=\iint_{D} y^{2}\left(\sqrt{x^{2}+y^{2}}\right)^{2} \sqrt{2} d A=$
$\int_{\theta=0}^{2 \pi} \int_{r=1}^{2} r^{2} \sin ^{2}(\theta) r^{2} \sqrt{2} r d r d \theta=\ldots \frac{21 \pi \sqrt{2}}{2}$

Example: Compute $\iint_{S} x y d S$ where S is the boundary of the region enclosed by the cylinder $x^{2}+z^{2}=1$ and the planes $y=1$ and $x+y=3$

Surface integrals over vector fields.

Let S be a surface parametrized by $\mathbf{r}(u, v)$. If S has a tangent plane at every point on S (except at any boundary points), then there are two unit normal vectors at every point.
$\mathbf{n}_{1}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}$ and $\mathbf{n}_{2}=\frac{\mathbf{r}_{v} \times \mathbf{r}_{u}}{\left|\mathbf{r}_{v} \times \mathbf{r}_{u}\right|}$
The normal vector provides an orientation for S and S is called an oriented surface

For a surface defined by $z=g(x, y)$, then $\mathbf{n}=\frac{\left\langle-g_{x},-g_{y}, 1\right\rangle}{\sqrt{1+\left(g_{x}\right)^{2}+\left(g_{y}\right)^{2}}}$
Since the \mathbf{k} component is positive, this gives the upward orientation of the surface.
Note: For a closed surface, a surface that is the boundary of a solid region(volume), positive orientation is where the normal vectors point outward from the region.

Definition: If \mathbf{F} is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n}, then the surface integral of \mathbf{F} over \mathbf{S} is
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$
This integral is also called the flux of \mathbf{F} across S.
Note: If S is parametrized by $\mathbf{r}(u, v)$, then $\mathbf{n}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}$
This gives $d \mathbf{S}=\mathbf{n} d S=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|} d S=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$
Thus
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$
Note: choose the cross product that gives the correct orientation for the problem.

Example: Let S be the part of the paraboloid $z=1-x^{2}-y^{2}$ above the $x y$-plane with upward orientation. Find the flux of $\mathbf{F}=\langle x, y, 3 z\rangle$ across S.

Example: Let S be the sphere $x^{2}+y^{2}+z^{2}=16$ with a positive orientation and $\mathbf{F}=\langle 0,0, z\rangle$. Evaluate $\iint \mathbf{F} \cdot d \mathbf{S}$

Example: Let S be the closed surface of a tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(0,0,1)$, i.e .the surface of the solid in the first octant that is formed by the plane $x+y+z=1$ and the three coordinate planes. Let $\mathbf{F}=\langle y, z-y, x\rangle$ and use positive orientation.

Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$

