Section 16.5: Curl and Divergence

Definition: The **del operator**, denoted ∇ , is defined as $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$

Definition: If $\mathbf{F} = \langle P, Q, R \rangle$ is a a vector field on \Re^3 and the partial derivatives of P, Q, and R all exist, then the **curl** of \mathbf{F} is the vector field on \Re^3 defined by

 $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \left\langle \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \quad \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\rangle$ $\operatorname{curl} \mathbf{F} = \left\langle R_y - Q_z, \ P_z - R_x, \ Q_x - P_y \right\rangle$

Note: The curl \mathbf{F} relates to rotation of a fluid at point P around the axis that points in the same direction of curl \mathbf{F} .

Note: If the curl $\mathbf{F} = \mathbf{0}$ at point P, then **F** is called **irrotational** at P.

Example: Find the curl of the vector field $\mathbf{F} = \langle x^2 y, yz^2, zx^2 \rangle$

Theorem: If f is a function of three variables that has continuous second-order partial derivatives, then $\operatorname{curl}(\nabla f) = \mathbf{0}$.

 $\nabla f = \langle P, Q, R \rangle = \langle f_x, f_y, f_z \rangle$ $\operatorname{curl}(\nabla f) = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$ $\operatorname{curl}(\nabla f) = \langle f_{zy} - f_{yz}, f_{xz} - f_{zx}, f_{yx} - f_{xy} \rangle = \langle 0, 0, 0 \rangle$

Theorem: If **F** is a vector field defined on all of \Re^3 whose component functions have continuous partial derivatives and curl **F** = 0, then **F** is a conservative vector field.

Example: Determine if the vector field is conservative. $\mathbf{F} = \langle zx, xy, yz \rangle$.

Definition: If $\mathbf{F} = \langle P, Q, R \rangle$ is a vector field on \Re^3 and P_x , Q_y and R_z exist, then the **divergence** of \mathbf{F} is the scalar function given by

div
$$\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \nabla \cdot \mathbf{F}$$

Note: If \mathbf{F} is a velocity field for a fluid, then div \mathbf{F} at a point measures the tendency of the fluid to diverge from that point. div \mathbf{F} positive(negative) means move away(towards).

Example: Compute the div **F** where $\mathbf{F} = \langle y^2 z^3, 2xyz^3, 3xy^2 z^2 \rangle$.

Theorem: If $\mathbf{F} = \langle P, Q, R \rangle$ is a vector field on \Re^3 and P, Q, and R have continuous second-order partial derivatives, then

div curl $\mathbf{F} = \operatorname{div} \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle = R_{yx} - Q_{zx} + P_{zy} - R_{xy} + Q_{xz} - P_{yz} = 0$ div curl $\mathbf{F} = 0$

Example: Is there a vector field **G** on \Re^3 such that curl **G** = $\langle yz, xyz, zy \rangle$?

Example: Compute curl **F** if **F** is a vector field on \Re^2 .

Suppose that $F = \langle P, Q \rangle$. Lets expand this to three dimensions by letting the z component, R, be zero. i.e. $F = \langle P, Q, 0 \rangle$.

Thus curl $\mathbf{F} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle = \langle 0, 0, Q_x - P_y \rangle$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_C P dx + Q dy = \iint_D Q_x - P_y dA = \iint_D \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \ dA$$