Section 16.5: Curl and Divergence

Definition: The del operator, denoted ∇, is defined as $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$

Definition: If $\mathbf{F}=\langle P, Q, R\rangle$ is a a vector field on \Re^{3} and the partial derivatives of P, Q, and R all exist, then the curl of \mathbf{F} is the vector field on \Re^{3} defined by
$\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left\langle\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \quad \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right\rangle$
$\operatorname{curl} \mathbf{F}=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle$

Note: The curl \mathbf{F} relates to rotation of a fluid at point P around the axis that points in the same direction of curl \mathbf{F}.

Note: If the curl $\mathbf{F}=\mathbf{0}$ at point P , then \mathbf{F} is called irrotational at P .
Example: Find the curl of the vector field $\mathbf{F}=\left\langle x^{2} y, y z^{2}, z x^{2}\right\rangle$

Theorem: If f is a function of three variables that has continuous second-order partial derivatives, then $\operatorname{curl}(\nabla f)=\mathbf{0}$.
$\nabla f=\langle P, Q, R\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$
$\operatorname{curl}(\nabla f)=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle$
$\operatorname{curl}(\nabla f)=\left\langle f_{z y}-f_{y z}, f_{x z}-f_{z x}, f_{y x}-f_{x y}\right\rangle=\langle 0,0,0\rangle$

Theorem: If \mathbf{F} is a vector field defined on all of \Re^{3} whose component functions have continuous partial derivatives and curl $\mathbf{F}=0$, then \mathbf{F} is a conservative vector field.

Example: Determine if the vector field is conservative. $\mathbf{F}=\langle z x, x y, y z\rangle$.

Definition: If $\mathbf{F}=\langle P, Q, R\rangle$ is a a vector field on \Re^{3} and P_{x}, Q_{y} and R_{z} exist, then the divergence of \mathbf{F} is the scalar function given by $\operatorname{div} \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\nabla \cdot \mathbf{F}$

Note: If \mathbf{F} is a velocity field for a fluid, then $\operatorname{div} \mathbf{F}$ at a point measures the tendency of the fluid to diverge from that point. div \mathbf{F} positive(negative) means move away(towards).

Example: Compute the div \mathbf{F} where $\mathbf{F}=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$.

Theorem: If $\mathbf{F}=\langle P, Q, R\rangle$ is a vector field on \Re^{3} and P, Q, and R have continuous second-order partial derivatives, then
$\operatorname{div} \operatorname{curl} \mathbf{F}=\operatorname{div}\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle=R_{y x}-Q_{z x}+P_{z y}-R_{x y}+Q_{x z}-P_{y z}=0$ $\operatorname{div} \operatorname{curl} \mathbf{F}=0$

Example: Is there a vector field \mathbf{G} on \Re^{3} such that curl $\mathbf{G}=\langle y z, x y z, z y\rangle$?

Example: Compute curl \mathbf{F} if \mathbf{F} is a vector field on \Re^{2}.
Suppose that $F=\langle P, Q\rangle$. Lets expand this to three dimensions by letting the z component, R, be zero.
i.e. $F=\langle P, Q, 0\rangle$.

Thus curlF $=\left\langle R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right\rangle=\left\langle 0,0, Q_{x}-P_{y}\right\rangle$
$\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y=\iint_{D} Q_{x}-P_{y} d A=\iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d A$

