Section 16.4: Green's Theorem

The positive orientation of a simple closed curve C refers to a single counterclockwise traversal of C.
Green's Theorem: Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then
$\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$
Alternate notations: When $F=\langle P, Q\rangle$ and curve given by $r(t)$
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y=\oint_{C} P d x+Q d y=\int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$

Example: Evaluate $\oint_{C} x^{2} y d x+x d y$ where C is the triangular path from $(0,0)$ to $(1,0)$ to $(1,4)$ to (0.0).

Example: Suppose a particle travels one revolution counter-clockwise around the unit circle under the force field $\mathbf{F}(x, y)=\left\langle e^{x}-y^{3}, \cos (y)+x^{3}\right\rangle$. Find the work done by the field.

Example: Evaluate $\oint_{C}\left(x^{2} y+\frac{1}{2} y^{2}+e^{\sin (x)}\right) d x+\left(x y+\frac{1}{3} x^{3}+x-\arctan (y)\right) d y$ where C is the triangular path from $(0,0)$ to $(1,0)$ to $(1,4)$ to (0.0).

Area Using Line Integrals:

Since $\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$, we need $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$

Method 1:

$$
P=0 \text { and } Q=x
$$

Method 2:

$$
P=-y \text { and } Q=0
$$

$$
P=\frac{\frac{-1}{2} y \text { and } Q}{}=\frac{1}{2} x
$$

Example: Find the area enclosed by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Example: Setup the integral that would give the area of the shaded region shown below. The figure is created with the parametric equations: $x=4 \cos (t)-\cos (4 t), \quad y=4 \sin (t)-\sin (4 t)$

Example: Evaluate $\int_{C} x^{2} y d x+x d y$ where C is the path from $(1,4)$ to $(0,0)$ to $(1,0)$

