Section 16.3: The Fundamental Theorem for Line Integrals

Recall the Fundamental Theorem of Calculus: $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$
Theorem: Let C be a smooth curve given by the vector function $\mathbf{r}(t), a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=
$$

Note: The line integral of a conservative vector field (∇f with potential function f) can be evaluated by knowing the endpoints of the curve.

Note: This can also be used on curves that are that are piecewise smooth.

Example: Let $f(x, y)=3 x+x^{2} y-y^{3}$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\nabla f$ and C is the curve given by $\mathbf{r}(t)=\left\langle e^{t} \sin (t), e^{t} \cos (t)\right\rangle, 0 \leq t \leq \pi$.

Definition: If \mathbf{F} is a continuous vector field with domain D, we say that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path if and only if $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ for any two paths C_{1} and C_{2} with the same starting and ending points.

Note: Line integrals of conservative vectors fields are independent of path.

Theorem: $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path in D if and only if $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed path C in D. (A closed path is one that starts and stops at the same point.)

An interpretation is that the work done by a conservative vector field as an object moves around a closed path is 0 .

Question: How do we determine if a vector field is conservative and if so, can we find the potential function?

Theorem: IF $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then we have $P_{y}=Q_{x}$.

Example: Is $\mathbf{F}=\left\langle 3 x^{2}-4 y, 4 y^{2}-2 x\right\rangle$ a conservative vector field?

Definition: A simple curve is a curve that does not intersect itself anywhere between its endpoints. A simply-connected region in the plane is one that is connected and does not have holes. i.e. every simple closed curve encloses only points in the region.

Theorem: Let $\mathbf{F}=\langle P, Q\rangle$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and $P_{y}=Q_{x}$ throughout D. Then \mathbf{F} is conservative.

Note: The above criteria to determine if a vector field is conservative works only for \Re^{2}. The criteria for a vector field in \Re^{3} is found in section 16.5.

Example: Determine whether $\mathbf{F}=\left\langle x+y^{2}, 2 x y+y^{2}\right\rangle$ is conservative or not. If so, find a potential function.

Example: Given that $\mathbf{F}=\left\langle 4 x e^{z}, \cos (y), 2 x^{2} e^{z}\right\rangle$ is conservative. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$, for $0 \leq t \leq \frac{\pi}{2}$.

Example: Given $\mathbf{F}=\left\langle 2 x y^{3}+z^{2}, 3 x^{2} y^{2}+2 y z, y^{2}+2 x z\right\rangle$ is conservative. Find a potential function F.

