Section 16.2: Line Integrals

Reminder: In section 13.3 we discussed arc length of a space curve, $\mathbf{r}(t)$, on the interval $a \leq t \leq b$. The length of the curve, L is given by
$L=\int_{a}^{b} d s=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$.

Line integrals on a plane:

Let C be a smooth curve defined by the parametric equations $x=x(t), y=y(t)$ or by the vector function $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, for $a \leq t \leq b$.

Definition: If f is defined on a smooth curve C, as defined above, then the line integral of \mathbf{f} along \mathbf{C} is
$\int_{C} f(x, y) d s=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i} \quad$ if the limit exists.
If f is a continuous function, then we can compute this line integral by
$\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
Note: This is sometimes refers to as the line integral with respect to arc length.

Note: The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as t increases from a to b.

When $f(x, y) \geq 0$, the line integral of f along C represents the area of one side of the "fence" or "curtain" whose base is C and whose height at any point on the curve is $f(x, y)$. If $f(x, y)=1$, then the line integral of f along C is the arc length of the curve C.

Example: Evaluate $\int_{C}\left(x^{2}+y\right) d s$ where C consists of the line segment from the point $(2,8)$ to $(0,16)$

Example: Evaluate $\int_{C}\left(2+x^{2} y\right) d s$, where C is the upper half of the circle $x^{2}+y^{2}=4$.

Definition: If C is a piecewise-smooth curve, that is C is made up a collection of smooth curves where one curve ends then the next curve begins, then line integral of f along C is defined to be the sum of the integrals of f along each smooth piece of C.

$\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\int_{C_{3}} f(x, y) d s$

Example: Evaluate $\int_{C} 2 y d s$, where C consists of C_{1} of $y=x^{3}$ from $(0,0)$ to $(2,8)$ followed by the line segment from $(2,8)$ to $(4,2)$.

Definition: Let C be a smooth curve defined by the parametric equations $x=x(t), y=y(t)$ for $a \leq t \leq b$.
The line integral of \mathbf{f} along \mathbf{C} with respect to \mathbf{x} is $\int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t$
The line integral of \mathbf{f} along \mathbf{C} with respect to \mathbf{y} is $\int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t$
Note: For these integrals, the orientation of the curve, which direction is is traversed, is important. If C and $-C$ represent traversing the same curve but in different directions, then
$\int_{-C} f(x, y) d x=-\int_{C} f(x, y) d x$

Example: Evaluate $\int_{C} y^{2} d x+x d y$, where C is the line segment from $(-5,-3)$ to $(3,1)$.

Example: Evaluate $\int_{C} y^{2} d x+x d y$, where C is the arc of the parabola $x=4-y^{2}$ from $(-5,-3)$ to $(3,1)$.

Example: Consider $f(x, y)=x^{2}$ and C be the smooth curve $r(t)=\langle t, 0\rangle$ for $0 \leq t \leq 2$. Then $x(t)=t$ and $y(t)=0$ and $x^{\prime}(t)=1 d t$
$\int_{C} f(x, y) d x=\int_{0}^{2} t^{2} * 1 d t=\int_{0}^{2} t^{2} d t$
Compare this to integrating $y=x^{2}$ on the interval $[0,2]$ which is $\int_{0}^{2} x^{2} d x$

Example: The curve C is the line segment from $(3,0)$ to $(3,15)$.
Compute $\int_{C}\left(x^{2}+2 y\right) d x$

Example: The curve C is the line segment from $(2,5)$ to $(7,5)$.
Compute $\int_{C}\left(x^{2}+2 y\right) d y$

Line Integrals in Space:

Let C be a smooth curve defined by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$. The line integral of f along C is
$\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left|\mathbf{r}^{\prime}(t)\right| d t$
Note: The line integral of f with respect to x, with respect to y, and with respect to z are defined in a manner similar to before.

Physical interpretation of a line integral: Let $\rho(x, y)$ represent the linear density at a point (x, y) of a thin wire shaped like the curve C.

Then the mass of the wire is $m=\int_{C} \rho(x, y) d s$
The center of mass (\bar{x}, \bar{y}) is
$\bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s$ and $\bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s$

Example: A thin wire with linear density $\rho(x, y)=2+x^{2} y$ takes the shape of the semicircle $x^{2}+y^{2}=4$, $y \geq 0$. Find the mass of this wire.

Line Integrals of Vector Fields

Suppose \mathbf{F} is a continuous vector field (i.e. force field). Find the work done moving a particle along the curve C given by $\mathbf{r}(t)$ for $a \leq t \leq b$.

Definition: Let \mathbf{F} be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t), a \leq t \leq b$. Then the line integral of \mathbf{F} along \mathbf{C} is
$\int_{c} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{c} \mathbf{F} \cdot \mathbf{T} d s$
Note: If the orientation of the curve is changed, i.e. C is replaced by $-C$, then the unit tangent vector is replaced by its negative. Thus
$\int_{-C} \mathbf{F} \cdot d \mathbf{r}=-\int_{C} \mathbf{F} \cdot d \mathbf{r}$

Example: Find the work done by the force field \mathbf{F} in moving a particle along the curve C.
$\mathbf{F}(x, y, z)=\langle x y, y z, x z\rangle$
$\mathrm{C}: \mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$.

Relationship between a line integral over a vector field and line integrals with respect to x, y, and z.
Let $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ with
C defined by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C}\langle P, Q, R\rangle \cdot\langle d x, d y, d z\rangle=\int_{C} P d x+Q d y+R d z$

