Section 16.1: Vector Fields

Definition: Let D be a set of points in either \Re^2 or \Re^3 . A vector field is a function **F** that assigns to each point in D to a vector.

in \Re^2 : $\mathbf{F}(x,y) = \langle P_1(x,y), P_2(x,y) \rangle$ in \Re^3 : $\mathbf{F}(x,y,z) = \langle P_1(x,y,z), P_2(x,y,z), P_3(x,y,z) \rangle$

Example: Sketch the vector field $\mathbf{F}(x, y) = \langle 1, 2x \rangle$

Definition: If f is a scalar function then the gradient of f, $\nabla f = \langle f_x, f_y \rangle$, is called a **gradient vector** field.

A vector field F is called a **conservative vector field** if it is the gradient of some scalar function f, i.e. $\mathbf{F}(x, y) = \nabla f(x, y)$. The function f is called a **potential function** for **F**.

Example: Find the gradient vector field for $f(x, y, z) = x \ln(y - z)$.