Section 16.1: Vector Fields

Definition: Let D be a set of points in either \Re^{2} or \Re^{3}. A vector field is a function \mathbf{F} that assigns to each point in D to a vector.
in $\Re^{2}: \mathbf{F}(x, y)=\left\langle P_{1}(x, y), P_{2}(x, y)\right\rangle \quad$ in $\Re^{3}: \mathbf{F}(x, y, z)=\left\langle P_{1}(x, y, z), P_{2}(x, y, z), P_{3}(x, y, z)\right\rangle$
Example: Sketch the vector field $\mathbf{F}(x, y)=\langle 1,2 x\rangle$

Definition: If f is a scalar function then the gradient of $f, \nabla f=\left\langle f_{x}, f_{y}\right\rangle$, is called a gradient vector field.

A vector field F is called a conservative vector field if it is the gradient of some scalar function f, i.e. $\mathbf{F}(x, y)=\nabla f(x, y)$. The function f is called a potential function for \mathbf{F}.

Example: Find the gradient vector field for $f(x, y, z)=x \ln (y-z)$.

