Section 15.9: Change of Variables in Multiple Integrals

From Cal 1/Cal 2 we know the following integrals are equivalent with the substitution $u=0.1 x^{2}-1$.

$$
\int_{0}^{5} x \cos \left(0.1 x^{2}-1\right) d x=\int_{-1}^{1.5} 5 \cos (u) d u \approx 9.19483
$$

Consider $\iint_{R} F(x, y) d A$ where R is a region in the $x y$-plane. Suppose we make the substitution $x=x(u, v)$ and $y=y(u, v)$ where x and y are functions of u and v that have continuous first-order partial derivatives. These equations give a transformation that will take a region S in the $u v$-plane and map it into a region R in the $x y$-plane, also called the image of S.
This will give $\iint_{R} F(x, y) d A=\iint_{S} F(x(u, v), y(u, v)) d A$
In order to find the region S that transforms into region R, we need the transformation be one-to-one. (This means no two points $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ map to the same point $\left(x_{1}, y_{1}\right)$. Also needed is that as the boundary of S is traversed once, then the boundary of R will also be traversed only once.

Example: A transformation is defined by the equations $x=u^{2}-v^{2}, \quad y=2 u v$.
Find the image of the square $S=\{(u, v) \mid 0 \leq u \leq 2,0 \leq v \leq 1\}$

Definition: The Jacobian of the transformation T given by $x=x(u, v)$ and $y=y(u, v)$ is
$J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \quad$ or $\quad J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=x_{u} y_{v}-x_{v} y_{u}$

Example: Find the Jacobian of the transformation defined by $x=u^{2}-v^{2}, \quad y=2 u v$.

Example: Find the Jacobian of the transformation defined by $x=r \cos \theta, \quad y=r \sin \theta$.

Change of Variable in a Double Integral Suppose T is a one-to-one transformation, where the substitutions have continuous first-order partial derivatives, whose Jacobian is nonzero and that maps a region S in the $u v$-plane onto a region R in the $x y$-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Then
$\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$

Example: Let R be the region bounded by the x-axis and the parabolas $y^{2}=64-16 x$ and $y^{2}=4+4 x$, $y \geq 0$. Use the change of variables $x=u^{2}-v^{2}$ and $y=2 u v$ to evaluate

$$
\iint_{R} y d A
$$

Region R

Example: Let R be the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. Evaluate by making the given transformation.
$\iint_{R} y+3 d A$ with $x=2 u$ and $y=3 v$

Example: Let R be the region in the first quadrant bounded by the lines $y=x$ and $y=4 x$ and the hyperbolas $x y=1$ and $x y=4$. Evaluate by making the given transformation.
$\iint_{R} x y d A$ with $x=u / v$ and $y=v$

Region R

Example: Let R be the region in the $x y$-plane bounded by the vertices $(0,1),(0,2),(2,0)$, and $(1,0)$. Evaluate
$\iint_{R} e^{(y-x) /(y+x)} d A$

Region R

Triple Integrals

Given the transformation $x=x(u, v, w), y=y(u, v, w)$ and $z=z(u, v, w)$ then the Jacobian is the following 3×3 determinant.
$J=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}x_{u} & x_{v} & x_{w} \\ y_{u} & y_{v} & y_{w} \\ z_{u} & z_{v} & z_{w}\end{array}\right|$

With a hypotheses similar to the double integral change of variables we have the following for the triple integral.

$$
\iiint_{R} f(x, y) d V=\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

Example: Find the Jacobian for the transformation.

$$
x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi
$$

We compute the Jacobian as follows:

$$
\begin{aligned}
\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}= & \left|\begin{array}{ccc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\cos \phi & 0 & -\rho \sin \phi
\end{array}\right| \\
= & \cos \phi\left|\begin{array}{cc}
-\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta
\end{array}\right|-\rho \sin \phi\left|\begin{array}{cc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta
\end{array}\right| \\
= & \cos \phi\left(-\rho^{2} \sin \phi \cos \phi \sin ^{2} \theta-\rho^{2} \sin \phi \cos \phi \cos ^{2} \theta\right) \\
& \quad-\rho \sin \phi\left(\rho \sin ^{2} \phi \cos ^{2} \theta+\rho \sin ^{2} \phi \sin ^{2} \theta\right) \\
= & -\rho^{2} \sin \phi \cos ^{2} \phi-\rho^{2} \sin \phi \sin ^{2} \phi=-\rho^{2} \sin \phi
\end{aligned}
$$

Since $0 \leqslant \phi \leqslant \pi$, we have $\sin \phi \geqslant 0$. Therefore

$$
\left|\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}\right|=\left|-\rho^{2} \sin \phi\right|=\rho^{2} \sin \phi
$$

