Section 15.7 : Triple Integrals in Cylindrical Coordinates

Cylindrical Coordinates:

A Cartesian point (x, y, z) is represented by (r, θ, z) in the Cylindrical Coordinate System. Where (r, θ) represent the polar coordinates for the point (x, y) and z is the distance above or below the $x y$-plane.

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=z \quad r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x}
$$

Note: Cylindrical coordinates are useful in problems that involve symmetry about the z-axis.

Example: Find the cylindrical coordinates for the point $(-1, \sqrt{3}, 2)$

Example: Write the equations in cylindrical coordinates.
A) $z=12-4 x^{2}-4 y^{2}$
B) $z=\sqrt{3 x^{2}+3 y^{2}}$

Triple Integrals in Cylindrical Coordinates

Suppose that E is a solid whose image D on the $x y$-plane can be described in polar coordinates.
$E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}$
and $D=\{(r, \theta) \mid a \leq \theta \leq b, h 1(\theta) \leq r \leq h 2(\theta)\}$
If $f(x, y, z)$ is continuous over the solid E , $g_{1}(r, \theta)=u_{1}(r \cos \theta, r \sin \theta)$, and $g_{2}(r, \theta)=u_{2}(r \cos \theta, r \sin \theta)$ then

$$
\iiint_{E} f(x, y, z) d V=\int_{\theta=a}^{b} \int_{r=h_{1}(\theta)}^{h_{2}(\theta)} \int_{z=g_{1}(r, \theta)}^{g_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Example A solid lies with in the cylinder $x^{2}+y^{2}=4$, below the plane $z=8$, and above the paraboloid $z=4-x^{2}-y^{2}$. The density at any point is proportional to its distance from the axis of the cylinder. Find the mass of E .

Example: Evaluate $\int_{x=0}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{z=\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) d z d y d x$

