Section 15.5: Surface Area

Let S be a surface with equation $z=f(x, y)$. Assume that this surface is above the xy-plane and the domain D of f is a rectangular region. Let $R_{i j}$ be a rectangular sub-partition of D where $\left(x_{i}, y_{j}\right)$ is the corner of $R_{i j}$ that is closest to the origin.

Notice from the figure, that the section of tangent plane, $\Delta T_{i j}$ at the point $P_{i j}\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right)$ over the region $R_{i j}$ will approximate the surface area on that region of the domain. Thus $A(S) \approx \sum_{i=1} \sum_{j=1} \Delta T_{i j}$

Let \mathbf{a} and \mathbf{b} be vectors that start at point $P_{i j}$ and lie along the edge of $\Delta T_{i j}$.
Thus $\mathbf{a}=\left\langle\Delta x, 0, f_{x}\left(x_{i}, y_{i}\right) \Delta x\right\rangle$ and $\mathbf{b}=\left\langle 0, \Delta y, f_{y}\left(x_{i}, y_{i}\right) \Delta y\right\rangle$ and the area of $\Delta T_{i j}=|\mathbf{a} \times \mathbf{b}|$.
Now $\mathbf{a} \times \mathbf{b}=\left\langle-f_{x}\left(x_{i}, y_{j}\right) \Delta x \Delta y, \quad-f_{y}\left(x_{i}, y_{j}\right) \Delta x \Delta y, \quad \Delta x \Delta y\right\rangle$ Since $\Delta x \Delta y=\Delta A$ we get
$\mathbf{a} \times \mathbf{b}=\left\langle-f_{x}\left(x_{i}, y_{j}\right) \Delta A, \quad-f_{y}\left(x_{i}, y_{j}\right) \Delta A, \quad \Delta A\right\rangle$ which gives
$\Delta T_{i j}=\sqrt{\left[f_{x}\left(x_{i}, y_{j}\right)\right]^{2}+\left[f_{y}\left(x_{i}, y_{j}\right)\right]^{2}+1} \quad \Delta A$
and $A(S) \approx \sum_{i=1} \sum_{j=1} \sqrt{\left[f_{x}\left(x_{i}, y_{j}\right)\right]^{2}+\left[f_{y}\left(x_{i}, y_{j}\right)\right]^{2}+1} \quad \Delta A$

Definition: The area of the surface with equation $z=f(x, y)$ over the region D where f_{x} and f_{y} are continuous is given by

$$
A(S)=\iint_{D} \sqrt{\left[f_{x}\right]^{2}+\left[f_{y}\right]^{2}+1} d A
$$

Example: Find the surface area of the part of the surface $z=3 x+y^{2}$ that lies above the triangle region in the $x y$-plane with vertices $(0,0),(0,2)$, and $(2,2)$.

Example: Find the surface area of the paraboloid given by $z=10-x^{2}-y^{2}$ for $z \geq 1$.

