Section 15.4: Applications of Double Integrals

- Area of a region D: $\iint_D 1 \, dA = A(D)$ the area of region D.
- Volume of a solid with base D and $f(x, y) \ge 0$ on region D: $\iint_D f(x, y) dA$
- The **total mass** of a lamina (thin plate or region) with variable density (in units of mass per unit area) on the region *D* is given by

$$m = \iint_D \rho(x, y) dA$$

where $\rho(x, y)$ is the density at the point (x, y). Note: If the density is constant then $m = \rho *$ Area of D.

Example: An electric charge is distributed over the part of the disk $x^2 + y^2 \le 4$ in the top half of the xy-plane so that the charge density at (x, y) is $\sigma(x, y) = x^2 + y^2$ (measured in coulombs per square meter). Find the total charge on the disk.

Moments and Center of Mass

The moment of a particle about an axis is defined to be the mass of the particle times the distance of the particle from the axis.

Given a lamina with density function $\rho(x, y)$. The moment of the lamina about the x-axis, denoted M_x , and the moment about the y-axis, denoted M_y , is given by

$$M_x = \iint_D y\rho(x,y)dA \qquad \qquad M_y = \iint_D x\rho(x,y)dA$$

The **center of mass**, $(\overline{x}, \overline{y})$ of the lamina with density $\rho(x, y)$ are

$$\overline{x} = \frac{M_y}{m} = \frac{1}{m} \iint_D x\rho(x,y)dA \qquad \overline{y} = \frac{M_x}{m} = \frac{1}{m} \iint_D y\rho(x,y)dA \qquad \text{where } m = \iint_D \rho(x,y)dA$$

Moments of Inertia: (second moment).

about the x-axis:
$$I_x = \iint_D y^2 \rho(x, y) dA$$
 about the y-axis: $I_y = \iint_D x^2 \rho(x, y) dA$

about the origin: $I_o = I_x + I_y = \iint_D (x^2 + y^2)\rho(x, y)dA$

Example: Find the mass of the lamina occupies the triangular region with vertices (0,0), (1,1), and (4,0). The density of the region is given by $\rho(x,y) = y$. Note the center of mass calculations can be found with the additional problems.