Section 15.1: Double Ingegrals over Rectangles

For a function of one variable, we define the integral in the following fashion. If $f(x)$ is defined on a closed interval $[a, b]$, we partition the interval $[a, b]$ into n equally spaced subintervals. Then
$=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$
If $f(x) \geq 0$ then this integral represent area.

Definition of the double integral

Let $f(x, y)$ be a function of two variable defined on a closed rectangle R. Assume(for now) that $f(x, y) \geq 0$.

Define $R=[a, b] \times[c, d]=\left\{(x, y) \in \Re^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$.
Lets partition both of the intervals $[a, b]$ into n equally spaced subintervals and $[c, d]$ into m equally spaced subintervals. This converts the rectangular region into a grid as shown int he picture.

Now choose a point $\left(x_{i}^{*}, y_{j}^{*}\right)$ in the region $R_{i j}$. Then the double integral of f over the rectangle r is $\iint_{R} f(x, y) d A=\lim _{n, m \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$
if this limit exists.

Note: Another notation is $\iint_{R} f(x, y) d A=\iint_{R} f(x, y) d x d y$

Theorem: If $f(x, y) \geq 0$ and f is continuous on the rectangle R, then the volume V of the solid S that lies above R and under the surface $z=f(x, y)$ is
$V=\iint_{R} f(x, y) d A$

Example: Evaluate the integral $\iint_{R} \sqrt{1-x^{2}} d A$
where $R=[-1,1] \times[-3,5]$ by identifying it as a volume of a solid.

Iterated Integrals

Definition: Suppose f is a function of two variables that is integrable over the rectangle $R=[a, b] \times[c, d]$.

The partial integration of f with respect to x is $\int_{a}^{b} f(x, y) d x$ and means that y is held fixed and f is integrated with respect to x . This result is a function of the variable $y: A(y)=\int_{a}^{b} f(x, y) d x$. If we now integrate A with repsect to the variable y we get
$\int_{c}^{d} A(y) d y=\int_{y=c}^{d}\left[\int_{x=a}^{b} f(x, y) d x\right] d y=\int_{y=c}^{d} \int_{x=a}^{b} f(x, y) d x d y$

The integral above is called an iterated integral. Similarly, we can get the following.
$\int_{x=a}^{b}\left[\int_{y=c}^{d} f(x, y) d y\right] d x=\int_{x=a}^{b} \int_{y=c}^{d} f(x, y) d y d x$

Example: Evaluate the following.
(A) $\int_{x=0}^{3} \int_{y=1}^{2} 6 x^{2} y d y d x$
(B) $\int_{1}^{2} \int_{0}^{3} 6 x^{2} y d x d y$

Fubini's Theorem: If f is continuous on the rectangle $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

In the case where $f(x, y)=g(x) h(y)$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} g(x) h(y) d y d x=\int_{a}^{b} g(x) d x \int_{c}^{d} h(y) d y
$$

Example: If $R=[1,8] \times[0, \pi]$, evaluate

$$
\iint_{R} y \cos (x y) d A
$$

Example: Find the volume of the solid S that is bounded by the elliptic paraboloid $z=6 x^{2}+y^{2}+1$, the planes $x=3$ and $y=4$ and the three coordinate planes.

