Section 14.4: Tangent Planes and Differentials

Definition: Suppose the surface S has the equation $z=f(x, y)$, where f has continuous first partials, and let $P(a, b, c)$ be a point on the surface. If C_{1} and C_{2} be the curves obtained by intersecting the planes $x=a$ and $y=b$ with the surface, then T_{1} and T_{2} are the respective tangent lines to the curves at point P. The tangent plane to the surface S at the point $P(a, b, c)$ is defined to be the plane that contains both of the tangent lines at point P.

Theorem: An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P(a, b, c)$ or $P(a, b, f(a, b))$ is

The normal vector for this plane is

The normal line is the line though the point $P(a, b, c)$ that is perpendicular to the tangent plane.

Example: Find an equation of the tangent plane to the graph of the function $z=3 x^{2}+y^{4}$ at the point (2, 1, 13).

Example: Find an equation of the tangent plane $f(x, y)=\ln (5 x+2 y)$ at the point $(-1,3,0)$. Also find a formula for the normal line at this point.

Differentials:

In Cal I we had for $y=f(x)$ the differentials $d y$ and $d x$ defined as

$$
d y=f^{\prime}(x) d x
$$

We saw that for the point $(\mathrm{a}, \mathrm{f}(\mathrm{a}))$ and $d x=\Delta x$ we found that
$f(a+\Delta x)=f(a)+\Delta y \approx f(a)+d y$

Definition: Consider a function of two variables $z=f(x, y)$. Let Δx and Δy be increments of x and y, respectively.

- Then differentials $\mathbf{d x}$ and dy are independent variables and $d x=\Delta x$ and $d y=\Delta y$
- The differential dz, also called the total differential, is a dependent variable and is defined by $\quad d z=f_{x}(x, y) d x+f_{y}(x, y) d y$

Note: $\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)$ and when Δx and Δy are small and the partials are both continuous, then $\Delta z \approx d z$.

The linearization, $L(x, y)$, of the function $f(x, y)$ at the point (a, b) is $L(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$

Example: Use differentials to find an approximate value for $\sqrt{1.03^{2}+1.98^{3}}$

Example: Find the differential(i.e. the total differential) of the function $w=x^{5} y^{3}+x^{2} z^{4}$.

Example: Estimate the amount of material in a closed can (right circular cylinder) with a radius of 3 in and a height of 8 in if the material of the can is 0.04 in thick.

Example: The dimensions of a closed rectangular box are measured as $90 \mathrm{~cm}, 70 \mathrm{~cm}$, and 60 cm with a possible error of 0.3 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

Definition: A function $f(x, y)$ is differentiable at (a, b) if its partial derivatives f_{x} and f_{y} exist and are continuous at (a, b).

Note: Polynomial and rational functions are differentiable on their domains.

Example: Find an equation of a tangent plane for the surface at the point $(1,1,1)$, if it is know the two space curves $\mathbf{r}(t)$ and $\mathbf{g}(s)$ are both both on the surface and they both go though the point $(1,1,1)$
$\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$
$\mathbf{g}(s)=\left\langle 1+2 s, 1+s-s^{2}, 1-s+s^{2}-s^{3}\right\rangle$

