Section 13.4: Motion in Space:

Let $\mathbf{r}(t)$ is a position function of a particle at time t. Then

- The velocity function is $\mathbf{r}^{\prime}(t)=\mathbf{v}(t)$ and speed is $|\mathbf{v}(t)|=v$.
- The acceleration function is $\mathbf{r}^{\prime \prime}(t)=\mathbf{v}^{\prime}(t)=\mathbf{a}(t)$.
- The unit tangent vector at t is defined to be $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$
- The unit normal vector at t is defined to be $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$

Now playing with functions and doing lots of algebra you get the following.
$\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}=\frac{\mathbf{v}(\mathbf{t})}{v(t)}$ which gives $\mathbf{T}=\frac{\mathbf{v}}{v}$ or $\mathbf{v}=v \mathbf{T}$
since $\kappa=\frac{\left|\mathbf{T}^{\prime}\right|}{\left|\mathbf{r}^{\prime}\right|}=\frac{\left|\mathbf{T}^{\prime}\right|}{v}$ gives $\left|\mathbf{T}^{\prime}\right|=v \kappa$
also $\mathbf{N}=\frac{\mathbf{T}^{\prime}}{\left|\mathbf{T}^{\prime}\right|}$ or $\mathbf{T}^{\prime}=\left|\mathbf{T}^{\prime}\right| \mathbf{N}=v \kappa \mathbf{N}$
Thus $\mathbf{a}=\mathbf{v}^{\prime}=v^{\prime} \mathbf{T}+v \mathbf{T}^{\prime}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N}$
another way of expressing this is $\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$
where $a_{T}=v^{\prime}$ and $a_{N}=\kappa v^{2}$
after lots more algebra(and fun) we get
$a_{T}=v^{\prime}=\frac{\mathbf{v} \cdot \mathbf{a}}{v}=\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$
$a_{N}=\kappa v^{2}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}\left|\mathbf{r}^{\prime}(t)\right|^{2}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$

Example: A particle moves with position function $\mathbf{r}(t)=\left\langle t^{2}, t^{2}, t^{3}\right\rangle$. Find the tangential and the normal components of acceleration.

$$
\begin{array}{ll}
\mathbf{r}^{\prime}(t)=\left\langle 2 t, 2 t, 3 t^{2}\right\rangle & \mathbf{r}^{\prime \prime}(t)=\langle 2,2,6 t\rangle \\
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{8 t^{2}+9 t^{4}} & \mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left\langle 6 t^{2},-6 t^{2}, 0\right\rangle \\
a_{T}=v^{\prime}=\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{8 t+18 t^{3}}{\sqrt{8 t^{2}+9 t^{4}}} & a_{N}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{6 t^{2} \sqrt{2}}{\sqrt{8 t^{2}+9 t^{4}}}
\end{array}
$$

