Section 13.3: Arc Length and Curvature

In Cal II, the arc length of a two-dimensional smooth curve that is only traversed once on an interval I was given by
$L=\int_{I} d s$ or $L=\int_{I} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$
This can be extended to a space curve. If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ on the interval $a \leq t \leq b$, then the length of the curve is given by
$L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t \quad$ or $\quad L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$.
Note: A curve $\mathbf{r}(t)$ is called smooth on an interval if $\mathbf{r}^{\prime}(t)$ is continuous and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$ on the interval. A smooth curve has no sharp corners or cusps, i.e. the tangent vector has continuous movement. The arc length formula holds for smooth and piecewise-smooth curves.

Example: Find the length of the arc for $\mathbf{r}(t)=\langle 3 t, 2 \sin (t), 2 \cos (t)\rangle$ from the point $(0,0,2)$ to $(6 \pi, 0,2)$.

Definition: The arc length function, s, is $s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$.
The arc length s is called the arc length parameter.

Example: Find the arc length function for $\mathbf{r}(t)=\left\langle 1, t^{2}, t^{3}\right\rangle$ from the point $(1,0,0)$ in the direction of increasing t.

Example: Reparametrize the curve $\mathbf{r}(t)=\langle 1+2 t, 3+t,-5 t\rangle$ with respect to arc length measured from the point where $t=0$ in the direction of increasing t.

Curvature

Definition: The curvature, κ, of a curve is defined to be the magnitude of the rate of change of the unit tangent vector with respect to the arc length is given by $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|$

Unit tangent vectors at equally spaced points on C

Theorem The curvature of the curve given by the vector function \mathbf{r} is
$\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}=\left|\mathbf{r}^{\prime \prime}(s)\right|$

Example: Find the curvature of $\mathbf{r}(t)=\langle-\sqrt{2} \sin t, \cos t, \cos t\rangle$.

Example: Find the curvature of $\mathbf{r}(t)=\left\langle 1+t, 1-t, 3 t^{2}\right\rangle$

Note: The unit normal vector is defined as $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$ and the
binormal vector is defined as $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t) . \mathbf{B}(t)$ is also a unit vector.

The plane determined by $\mathbf{N}(t)$ and $\mathbf{B}(t)$ is called the normal plane. The plane determined by $\mathbf{T}(t)$ and $\mathbf{N}(t)$ is called the osculating plane.

