Section 13.2: Derivatives and Integrals of Vector Functions

Theorem Let $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions, then $\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}$

Note: If $\mathbf{r}(t)$ is a position function of a particle at time t, then the velocity function is $\mathbf{r}^{\prime}(t)=\mathbf{v}(t)$ and the acceleration function is $\mathbf{r}^{\prime \prime}(t)=\mathbf{v}^{\prime}(t)=\mathbf{a}(t)$.
Definition: The unit tangent vector at t is defined to be $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$
Theorem Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then.

$$
\begin{array}{ll}
\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t) & \frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) \\
\frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t) & \frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t) \\
\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t) & \frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(f(t)) \quad \text { chain rule }
\end{array}
$$

Example: Given $\mathbf{r}(t)=\left\langle 3 t, e^{2 t-4}, \sin (t \pi)\right\rangle$.
(a) Find a tangent vector to the curve at $t=0$.
(b) Find $\mathbf{T}(0)$.
(c) Find a tangent line to the curve at the point $(6,1,0)$

Example: Show that if $|\mathbf{r}(t)|=c$ (a constant), then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$

Example: Given $\mathbf{r}(t)=\left\langle 3 t, e^{2 t-4}, \sin (t \pi)\right\rangle$. compute $\int \mathbf{r}(t) d t$

