Section 13.1: Vector Functions and Space Curves

Let \mathbf{r} be a vector function whose domain is a set of real numbers and result is a three-dimensional vector. Let

$$
\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

where $f(t), g(t)$, and $h(t)$ are real valued functions and are called the component functions of \mathbf{r}.
The limit of a vector function \mathbf{r} is defined by taking the limits of its component functions:

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle
$$

A vector function \mathbf{r} is continuous if and only if its component functions $f(t), g(t)$, and $h(t)$ are continuous.

Definition: Suppose that $f(t), g(t)$, and $h(t)$ are real valued functions on an interval I, then the set C defined as :

$$
C=\{(x, y, z) \mid x=f(t), y=g(t), z=h(t)\}
$$

where t is a parameter and t varies in some interval, I, is called a space curve. The space curve C can be traversed by the vector function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$.

Example: Does the space curve $\mathbf{r}(t)=\left\langle t, 0,2 t-t^{2}\right\rangle$ lie on the paraboloid $z=x^{2}+y^{2}$? Does it intersect the parabaloid?

Example: Describe the curve defined by the vector function. Indicate the direction of motion.

(b) $\mathbf{r}(t)=\left\langle t, t^{2}, c\right\rangle$, where c is a constant.
(c) $\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle$.

(d) $\mathbf{r}(t)=\langle 2+t, 2+3 t, 4-2 t\rangle, 0 \leq t \leq 1$

Example: Show that the curve $\mathbf{r}(t)=\langle\sin (t), 2 \cos (t), \sqrt{3} \sin (t)\rangle$ lies on both a plane and a sphere. What does the space curve for $\mathbf{r}(t)$ look like?

Example: Find a vector function that represents the curve of intersection of the two surfaces. $x^{2}+y^{2}=4$ and $z=x y$

Example: Sketch the curve $x=\cos ^{2} t, y=\sin ^{2} t$, and $z=t$.

