Section 12.4: The Cross Product

Reviewing the Determinate

The determinate of a 2 x 2 matrix is computed by
$\left|\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right|=a d-b c$
The determinate of a $3 x 3$ matrix is computed by
$\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left|\begin{array}{cc}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right|-a_{2}\left|\begin{array}{cc}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right|+a_{3}\left|\begin{array}{cc}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right|$
Example: Find the determinate of this matrice.

$$
\left|\begin{array}{ccc}
1 & 3 & 4 \\
5 & 0 & 2 \\
-3 & 6 & 7
\end{array}\right|
$$

Definition: If \mathbf{a} and \mathbf{b} are two nonzero three-dimensional vectors, the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=(|\mathbf{a}||\mathbf{b}| \sin (\theta)) \mathbf{n}
$$

where θ is the angle, $0 \leq \theta \leq \pi$, between \mathbf{a} and \mathbf{b} and \mathbf{n} is a unit vector perpendicular to both \mathbf{a} and \mathbf{b} and whose direction is given by the right-hand rule: If the fingers of your right hand curls through the angle θ from \mathbf{a} to \mathbf{b}, then your thumb points in the direction of \mathbf{n}.

Note: $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$
Note: Two non-zero vectors, \mathbf{a} and \mathbf{b}, are parallel if and only if $\mathbf{a} \times \mathbf{b}=\mathbf{0}$

Geometric Interpretation:

a

Properties of the Cross Product: If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and d is a scalar, then

- $\mathbf{a} \times \mathbf{a}=\mathbf{0}$
- $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})=-\mathbf{b} \times \mathbf{a}$
- $(d \mathbf{a}) \times \mathbf{b}=d(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(d \mathbf{b})$
- $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
- $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$

Definition: If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then
$\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, \quad a_{3} b_{1}-a_{1} b_{3}, \quad a_{1} b_{2}-a_{2} b_{1}\right\rangle$
$\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left|\begin{array}{cc}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right| \mathbf{k}$

Example: Compute the following for the vectors $\mathbf{a}=\langle 1,3,4\rangle$ and $\mathbf{b}=\langle 2,-5,6\rangle$.
A) $\mathbf{a} \times \mathbf{b}$
B) $\mathbf{b} \times \mathbf{a}$
C) $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})$

Example: Find a vector orthogonal to the plane determined by the points $A(1,2,3), B(4,6,8)$, and $C(15,2,-5)$

Example: Find the area of the parallelogram with vertices: $P(1,1,2), Q(6,1,2), R(4,5,5)$, and $S(9,5,5)$

Example: Find the area of the triangle determined by the points $P(1,1,2), Q(6,1,2)$, and $R(4,5,5)$.

Definition: If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, and $\mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ are vectors, then the scalar triple product is given by
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{a} \cdot\left(\left|\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right| \mathbf{k}\right)$
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=a_{1}\left|\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right|-a_{2}\left|\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right|+a_{3}\left|\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right|$
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
Note: The geometric interpretation of scalar triple product is that its magnitude is the volume of the parallelepiped formed by the vectors: \mathbf{a}, \mathbf{b}, and \mathbf{c}.

Example: Compute a scalar triple product of these vectors: $\mathbf{a}=\langle 1,2,3\rangle, \mathbf{b}=\langle 4,5,6\rangle$, and $\mathbf{c}=\langle 2,7,5\rangle$ Are these vectors co-planer?

Example: Determine if these points are co-planer: $A(4,-3,1), B(6,-4,7), C(1,2,2)$, and $D(0,1,11)$

