Section 12.3: Vectors

Definition: The **dot product** of two nonzero vectors **a** and **b** is the number

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where θ is the angle between the vectors **a** and **b**, $0 \le \theta \le \pi$. If either **a** or **b** is **0**, then **a** \cdot **b** = **0**.

The **dot product** of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ is

 $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Definition: Two non-zero vectors **a** and **b** are orthogonal(perpendicular) if and only if $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$, i.e. the angle between them is $\pi/2$.

Example: Find the following using these vectors: $\mathbf{a} = \langle -1, -2, -3 \rangle$, $\mathbf{b} = \langle -10, 2, 1 \rangle$, and $\mathbf{c} = \langle 2, 8, -6 \rangle$.

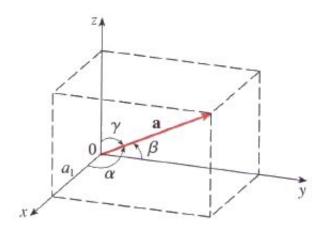
A) $\mathbf{a} \cdot \mathbf{b} =$

B) $\mathbf{a} \cdot \mathbf{c} =$

C) Find the angle between **a** and **b**.

Example: If $|\mathbf{a}| = 1$ and $|\mathbf{b}| = 2$, what is the maximum for $\mathbf{a} \cdot \mathbf{b}$? What does this say about the vectors?

Directional angles/and Direction Cosines

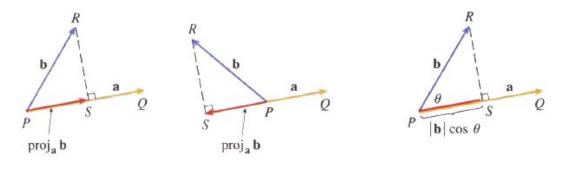


Example: Find the direction angles for $\mathbf{a} = \langle 1, 0, 5 \rangle$

Projections

Scalar projection of **b** onto **a**: $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$

Vector projection of **b** onto **a**: $\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$



Vector projections

Scalar projection