Section 12.2: Vectors

The term **vector** is used to represent a quantity that has both magnitude and direction. we denote a vector by putting a letter in boldface(\mathbf{a}) or by putting an arrow above the letter (\overrightarrow{a}). The **zero vector**, denoted $\mathbf{0}$, has length zero and is the only vector that does not have a specific direction.

Definition: A two dimensional vector has the form $\mathbf{a} = \langle a_1, a_2 \rangle$ and a three dimensional vector has the form $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, where a_1, a_2 , and a_3 are real numbers and are called the components of the vector.

Definition: Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation \overrightarrow{AB} is

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Example: For the points, A(1,2,8) and B(4,7,2), find \overrightarrow{AB} and \overrightarrow{BA} .

Definition: Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ and c be a scalar, i.e. $c \in \Re$.

Scalar Multiplication: $c\mathbf{a} = c \langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$

Length or magnitude of **a** is $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Vector Addition: $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$

Vector Subtraction: $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$

Definition: Two vectors are parallel if one vector is a scalar multiple of the other. i.e. there exists a $c \in \Re$ such that $c\mathbf{a} = \mathbf{b}$.

Definition: A vector of length 1 is called a **unit vector**. The vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$ and $\mathbf{k} = \langle 0, 0, 1 \rangle$ are called the standard basis vectors for \Re^3 .

To find a unit vector in the same direction as \mathbf{a} , divide vector \mathbf{a} by its magnitude. This process is called normalizing \mathbf{a} .

Example: Find the following using the vectors: $\mathbf{a} = \langle 1, 2, 4 \rangle$ and $\mathbf{c} = \langle 2, -4, 1 \rangle$.

A)
$$3a - 2c =$$

B) Find a vector of length 3 in the opposite direction of ${\bf a}.$