Final Exam Information

You are encouraged to double check this document to make sure that I didn't leave anything off.

- Section 14.7

Absolute max/min over a closed and bounded region.

- Section 16.1

vector fields
being able to draw/recognize a vector field
gradient vector field
conservative vector field
potential function for a vector field.

- Section 16.2

line integral of f along C .

- line integral with respect to arc length
- how to compute $d s$ in both two dimension and three dimension.
- is the orientation of C important in this type of line integral?
parametrize a line segment from start point to end point.
line integral of a function over a piecewise-smooth path is the sum of the line integrals of the function over each section of the path.
line integral of f with respect to x and line integral of f with respect to y and line integral of f with respect to z
- is the orientation of C important in this type of line integral?
Line integrals in a vector field.
- is the orientation of C important in this type of line integral?
- what is the relationship between a line integral of a vector field F along a path C to the line integral of a function f with respect to x , with respect to y , and with respect to z along a path C .

- Section 16.3

Fundamental theorem of line integrals

- when can this be used? i.e. what types of vectors fields can this theorem be applied in?

Independent of path

- any closed path(start and stop at the same point) for a line integral that is independent of path is 0 .
determining if a two dimension vector field is conservative/not conservative
simple curve
simply-connect region
finding a potential function for a conservative vector field.

- Section 16.4

Green's Theorem:

- positive orientation(counter-clockwise)
- closed region
computing the area of region D (a double integral) by using a line integral where $Q_{x}-P_{y}=1$ common methods

$$
\begin{aligned}
& P=0 \text { and } Q=x \\
& P=-y \text { and } Q=0 \\
& P=-0.5 y \text { and } Q=0.5 x
\end{aligned}
$$

how to fix a path that is not positively orientated. how to fix a path that is not closed.

- Section 16.5

curl F
what does it mean if the curl $\mathrm{F}=\langle 0,0,0\rangle$
divergence of F
div curl $\mathrm{F}=$?

- Section 16.6

parameterize a surface
tangent plane for a surface that has been parameterized
short cut for finding a cross product for particular parameterizations.
compute surface area of a region that is parameterized.

- Section 16.7

not in a vector field

- surface integral of a function over a surface S.
- surface integral where S is the boundary of a solid.
in a vector field F
- oriented surface
- picking the cross product that matches the orientation of the surface
- for a closed surface, positive orientation is where the normal vectors point outward.
- surface integral of F over S . also called the flux of F across S .
- surface integral of F over a closed surface.

- Section 16.8

stokes' theorem

- Section 16.9
divergence theorem

Any additional topic/information covered in these sections.

