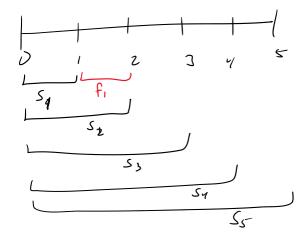
Section 10.5: Forward Rates


A **forward rate** is an expected spot rate which will come into play in the future.

Consider the following: A firm needs to borrow money for two years. The one-year spot rate is 7% and the two-year spot rate is 8%.

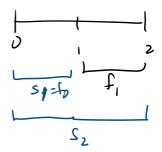
The firm has two options: (a) borrow all the money at the two-year spot rate or (b) borrow for one year at the one-year spot rate and then borrow for the second year at the one-year spot rate in effect a year later. The second one-year spot rate is called a **forward rate**.

A set of spot rates will imply a set of forward rates.

Unless told otherwise, forward rates are quoted as annual effective rates.

Notation:

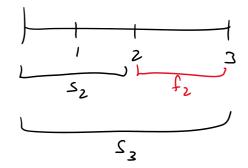
Sp = 14r spot Pate. Starts it too


- s_t is the spot rate from time 0(year 0) to time t (year t).
- f_t is the one year forward rate from year t to year t + 1.
 i.e. f₂ means, starting 2 years from now the effective rate of interest for one year will be f₂.

Interpret f_0 . = S_1

 $\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

f, = starting by from now (to) this is the 19- Rote



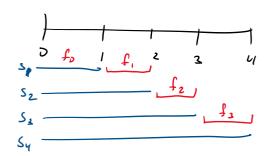
 $I(1+s_2)^2 = I(1+s_1)(1+f_1)$

$$f_{i} = \frac{(1+s_{2})^{2}}{1+s_{1}}$$

$$f_{i} = \frac{(1+s_{2})^{2}}{1+s_{1}} - 1$$

for is the 1905 forward Ruke starting at t= 2

 $(1+S_3)^3 = (1+S_2)^2 (H_{f_2})^3$ $1+f_2 = \frac{(1+S_3)^3}{(1+S_2)^2}$


$$f_{n-1} = \frac{(1+S_n)^n}{(1+S_{n-1})^{n-1}} - 1$$

general formula for forward Rotes

Example: Given the following spot rates, find all one-year forward rates that can be determined from this information.

term	1 year	2 year	3 year	4 year
Spot rate, s_t	6%	6.25%	7%	7.5%
	' S,	Sz	ر ک ^ا	ر ک _م

$$\int_{0}^{\infty} = S_{1} = 6 \%$$

$$f_{1} = \frac{(1+5\nu)^{2}}{(1+5)} = \frac{(1.0625)^{2}}{(1.0625)^{2}} \implies f_{1} = 6.5005896\%$$

$$f_{2} = (1+s_{2})^{3} = (1+s_{2})^{2} (1+f_{2})$$

$$(1+f_{2}) = \frac{(1+s_{2})^{3}}{(1+s_{2})^{2}} = \frac{(1.07)^{3}}{(1.0625)^{2}} \longrightarrow f_{2} = 8.5757\%$$

$$\frac{f_3}{(1+f_3)} = \frac{(1+S_4)^4}{(1+S_2)^3} = \frac{(1.075)^4}{(1.07)^3} \longrightarrow f_3 = 9.014\%$$

$$(1+f_0)(1+f_1)(1+f_2) = 1.225043$$

$$(1.07)^3 = 1.225043$$

Page 4

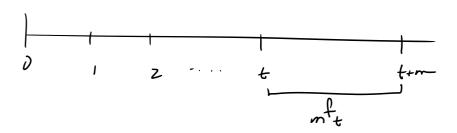
In general, an -n-year spot rate can be expressed in terms of a set of n one-year forward rates.

$$(1+53)^3 = (1+f_0)(1+f_1)(1+f_2)$$

Example: The following table has the prices of \$1000 par value bonds with 10% annual coupons.

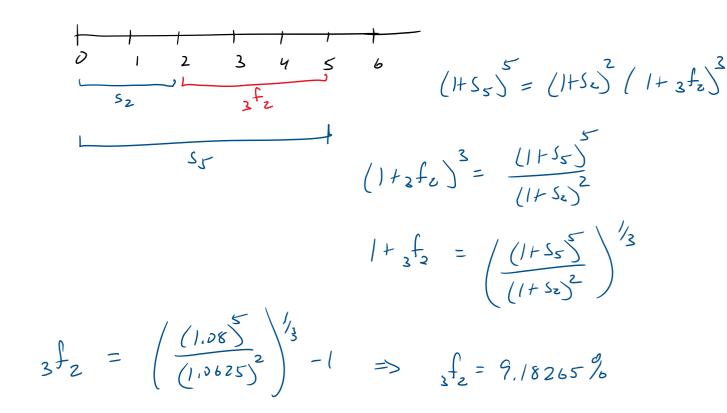
term 1 year 2 year 3 year price 1028.04 1036.53 1034.47
$$F_r = 1028.04 (10) = 1028.04$$

Find the forward rates for t = 0, 1, 2 that are implied by these bond prices.


$$\frac{167}{1028.04} = \frac{1004.1000}{1+f_0} \longrightarrow 1+f_0 = \frac{1/00}{1028.04} \longrightarrow f_0 = 7\%$$

$$\frac{2yr}{1+f_0}$$
 /036.53 = $\frac{100}{1+f_0}$ + $\frac{100+1000}{(1+f_0)(1+f_0)}$ -> $f_1 = 9.009\%$

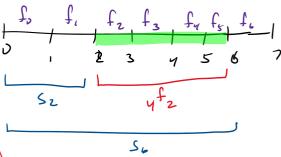
$$\frac{350}{1+60} + \frac{100}{1+60} + \frac{100}{1+60} + \frac{100+1000}{1+60} \longrightarrow f_2 = 10.27\%$$


Forward rate over m-years

The m-year forward rate (annual effective) which applies over the period from time t to time t+m is denoted by $_mf_t$ or $f_{t,t+m}$

Example: Given the following spot rates, compute the forward rate that is applicable for 3 years starting 2 years from now.

•						•0		r
	term	1 year	2 year	3 year	4 year	5 year	~>	2+z
	Spot rate, s_t	6%	6.25%	7%	7.5%	8%		_



Page 8

Example: Consider the forward rates given below.

t	0	1	2	3	4	5	6
f_t	2%	4%	5%	7%	8%	9%	3%

Compute $_4f_2$.

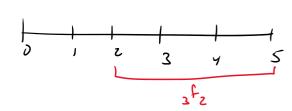
$$(1+5z)=(1+f_0)(1+f_1)$$

$$(1+s_{2})^{6} = (1+s_{2})^{2} (1+4f_{2})^{4}$$

$$(1+4f_{2})^{4} = \frac{(1+s_{2})^{2}}{(1+s_{2})^{2}}$$

$$(1+4f_z)^4 = (1+f_2)(1+f_3)(1+f_4)(1+f_5)$$

$$\vdots$$


$$yf_z = 7.23976\%$$

prices of 5 zero compon bom/s

Tem	150	25-	345	45-	5gr
poll per	97.0874	90.72021	£1.629k	73,5030	64.2529

determine 3 fz

need Sz +Ss

for 5 2

 $90.72021 = \frac{100}{(1+52)^{2}}$ $(1+52)^{2} = \frac{100}{90.72029} \longrightarrow 52 = 4.99\%$

fress)

$$64.2529 = \frac{100}{(1+55)^5}$$
 \longrightarrow $55 = 9.25\%$

 $(1+5=)^{5} = (1+5)^{2} (1+3+5)^{3} \longrightarrow 3^{2} = 12.1856\%$