Section 13.1: Vector Functions and Space curves

Let \mathbf{r} be a vector function whose domain is a set of real numbers and result is a three-dimensional vector. Let

$$
\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

where $f(t), g(t)$, and $h(t)$ are real valued functions and are called the component functions of \mathbf{r}.

The limit of a vector function \mathbf{r} is defined by taking the limits of its component functions:

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle
$$

A vector function \mathbf{r} is continuous if and only if its component functions $f(t), g(t)$, and $h(t)$ are continuous.

Example: Given $\mathbf{r}(t)=\left\langle t \sqrt{t+5}, t^{2}+2, \frac{e^{t}-1}{t}\right\rangle$
a) Find the domain of $\mathbf{r}(t)$.

$$
[-5,0) \cup(0, \infty)
$$

$$
\begin{array}{ll}
f=t \sqrt{t+5} & t \geqslant-5 \\
g=t^{2}+2 & \text { all reds. } \\
h=\frac{e^{t}-1}{t} & t \neq 0
\end{array}
$$

note: of $t=-5$ we have Right continuity

$$
\begin{aligned}
\text { e) Compute } \lim _{t \rightarrow 0} r(t) . & \langle\lim _{t \rightarrow 0} t \sqrt{t+5}, \lim _{t \rightarrow 0} t^{2}+2, \underbrace{}_{t \rightarrow 0} \frac{e^{t}-1}{t}\rangle \\
& =\left\langle 0,2, \lim _{t \rightarrow 0} \frac{e^{t}}{1}\right\rangle \quad \text { use L'topitzl } \\
& =\langle 0,2,1\rangle
\end{aligned}
$$

Pg 3

Definition: Suppose that $f(t), g(t)$, and $h(t)$ are real valued functions on an interval I, then the set C defined as :

$$
C=\{(x, y, z) \mid x=f(t), y=g(t), z=h(t)\}
$$

where t is a parameter and t varies in some interval, I, is called a space curve. The space curve C can be traversed by the vector function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$.

$$
t_{1}<t_{2}<t_{3}
$$

Example: Describe the curve defined by the vector function. Indicate the direction
of motion.
(a) $\mathbf{r}(t)=\left\langle t, t^{2}, 0\right\rangle$

(b) $\mathbf{r}(t)=\left\langle t, t^{2}, c\right\rangle$, where c is a constant.
$z=0$

$$
\text { if } c=5
$$

$$
\text { if } \underbrace{c=-2}_{\text {plane }}
$$

$$
z=-2
$$

Pg 5
(c) $\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle$.

$$
z=t
$$

graphs

$\left.\begin{array}{l}x=t \\ z=t\end{array}\right] \rightarrow x=z$

Pg 6
(d) $\mathbf{r}(t)=\langle 2+t, 2+3 t, 4-2 t\rangle, 0 \leq t \leq 1$

$$
\begin{array}{rr}
t=0 & r(0)=\langle 2,2,4\rangle \\
& \text { point }(2,2,4)^{A} \\
t=1 & r(1)=\langle 3,5,2\rangle \\
& \text { point }(3,5,2)^{B}
\end{array}
$$

$$
\left.\begin{array}{l}
x=\sin (t) \\
y=2 \cos (t) \\
z=\sqrt{3} \sin (t)
\end{array}\right] \rightarrow \underbrace{z=\sqrt{3} x} \rightarrow \text { plane. }
$$

$$
\begin{aligned}
x^{2}+y^{2} & +z^{2}=\sin ^{2}(t)+(2 \cos (t))^{2}+(\sqrt{3} \sin (t))^{2} \\
& =\sin ^{2} t+4 \cos ^{2}(t)+3 \sin ^{2}(t) \\
& =4 \sin ^{2} t+4 \cos ^{2} t \\
& =4\left[\sin ^{2}(t)+\cos ^{2}(t)\right] \\
x^{2}+y^{2}+z^{2} & =4
\end{aligned}
$$

$$
\begin{aligned}
& x=\sin t \\
\sin ^{2} t+\cos ^{2} t & =1 \\
y & =2 \cos t \\
x^{2}+\left(\frac{y}{2}\right)^{2} & =1
\end{aligned} \quad \text { elliptical cylinder }
$$

y-axis is comming out of the screen.

Pg 8

Example: Find a vector function that represents the curve of intersection of the two surfaces.
$x^{2}+y^{2}=4$ and $z=x y$

Example: Sketch the curve $x=\cos ^{2} t, y=\sin ^{2} t$, and $z=t$.

