Section 15.5: Surface Area

Let S be a surface with equation z = f(x,y). Assume that this surface is
above the xy-plane and the domain D of f is a rectangular region. Let R;;
be a rectangular sub-partition of D where (x;,y;) is the corner of R;; that is
closest to the origin.

Notice from the figure, that the section of tangent plane, AT;; at the point

P;j(x;, yj, f(xi,y5)) over the region R;; will approximate the surface area on

that region of the domain. Thus A(S) = >~ > AT
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Let a and b be vectors that start at point P;; and lie along the edge of ATj;.

Thus a = (Ar,0, fz(x;, y:)Ax) and b = (0, Ay, fy(x:,y:)Ay) and the area of
AT;; = |a x bl.

Now a x b = (—fa(zi, yj)AzAy, —fy(r:, y;)AxAy, AxrAy) Since ArAy = QA'
AA we get

axb=(—firiy)AA, —fylziy;)AA, AA) which gives

ATy =/ felre, )P + ol yp)? +1 A4
g i i
and A(S) =~ 3 i\/[fx'ii'eayj)iz + [fylra )P +1 AA
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* Definition: The area of the surface with equation z = f(x, y) over the region
D where f, and f, are continuous is given by

A3) = / / VI 4[R2 +1 dA
B

—
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Example: Find the surface area of the part of the surface z = 3z + y? that
lies above the triangle region in the ry—plane with vertices (0,0). (0,2). and
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Example: Find the surface area of the paraboloid given by z = 10 — x2 — 32
for z > 1.
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