Section 12.5: Equations of Lines and Planes

Definition: The vector equation of a line is found by the formula

$$
\mathrm{r}=\mathrm{r}_{0}+t \mathrm{v}
$$

where r_{0} is a vector representation of a point on the line, v is a directional vector of the line (i.e. a vector that is parallel to the line), and $t \in \Re$.

Example: Find the vector equation and the parametric equations of a line though the point $(1,2,3)$ where the line is parallel to the vector $\mathbf{v}=<2,5, \overline{10>}$.
point
direction vector.
vector eq.

$$
\begin{aligned}
& r(t)=\langle 1,2,3\rangle+t\langle 2,5,10\rangle \\
& r(t)=\langle 1+2 t, 2+5 t, 3+1 \Delta t\rangle
\end{aligned}
$$

parametric equations)

$$
\begin{aligned}
& x=1+2 t \\
& y=2+5 t \\
& z=3+10 t \\
& t=\text { ans } \#
\end{aligned}
$$

Example: Find the vector equation of the line through the points $(3,5,5)$ and $B_{(2,1,-5) \text {. Also give the parametric equations of this line. Where does the line }}$ intersect the $x y$-plane?
point.

$$
r_{0}=\langle 3,5,5\rangle
$$

direction vector: $\quad V=\overrightarrow{B A}=\langle 1,4,10\rangle$

$$
\begin{aligned}
\frac{\text { vector ever }}{r(t)} & =\langle 3,5,5\rangle+t\langle 1,4,10\rangle \\
& =\langle 3+t, 5+4 t, 5+10 t\rangle
\end{aligned}
$$

parametric eq.

$$
\begin{aligned}
& x=3+t \\
& y=5+4 t \\
& z=5+10 t
\end{aligned}
$$

Intersect $x y$ plane is $z=0$

$$
\begin{aligned}
0 & =5+10 t \\
-5 & =10 t \\
t & =-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=3-\frac{1}{2}=2 \cdot 5 \\
& y=5+4\left(\frac{-1}{2}\right)=5-2=3 \\
& z=0
\end{aligned}
$$

point $(2.5,3,0)$

Example: Is the point $(7,10,17)$ on the line $\mathbf{r}=<1+3 t, 2+4 t, 3+7 t>$?

$$
\begin{array}{rr}
7=1+3 t & r(2)=\langle 7,10,17\rangle \\
6=3 t & \\
2=t & y e s
\end{array}
$$

Pg 5: symmetric equations

Symmetric equations of a line: If $\mathrm{a}, \mathrm{b}, \mathrm{c} \neq 0$ and line L goes through the point $\left(x_{0}, y_{0}, z_{0}\right)$ with directional vector $\langle a, b, c\rangle$ then

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}=t
$$

If, for example, $a=0$ then the symmetric equations have the form:

$$
L^{x=x_{0}}, \frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

new point.

Example: Find the symmetric equations of the line through the point $(5,8,-2)$ and

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t \\
& z=z_{0}+c t
\end{aligned}
$$

parallel to the line

$$
\begin{aligned}
& x=2+4 t \\
& y=3+2 t \\
& z=1+6 t
\end{aligned}
$$

$$
v=\langle 4,2,6\rangle
$$

$$
\begin{aligned}
& x=5+4 t \\
& y=8+2 t \\
& z=-2+6 t
\end{aligned}
$$

$$
\begin{aligned}
\frac{1-z}{2}=m \quad 1-z & =2 m \\
1-2 r & =z
\end{aligned}
$$

Definition: Skew lines are lines that are not parallel and do not intersect.
Example: Are these lines parallel, skew, or intersecting? If intersecting, find the point of intersection.

$$
L_{1}: \frac{x+2}{3}=\frac{y-5}{-4}=\frac{1-z}{2}=m \longrightarrow \begin{aligned}
& x=-2+3 m \\
& y=5-4 m \\
& 2=1-2 m
\end{aligned} \quad V_{1}=\langle 3,-4,-2\rangle
$$

and

$$
\begin{aligned}
L_{2}: \quad x=1-t, \quad y & =3+2 t, \quad z=-12-3 t \\
V_{2} & =\langle-1,2,-3\rangle
\end{aligned}
$$

parcel? not

Intersections

$$
\begin{array}{ll}
1-t=3 m-2 & 3+2 t=5-4 m \\
-t=3 m-2-1 \\
-t=3 m-3 \\
t=-3 m+3 \\
t=-3(2)+3 & 9-6 m+6=5-4 m \\
t=-6+3 \\
t=-3
\end{array} \quad \begin{aligned}
& 3+2(-3 m+3)=5-4 m \\
& t
\end{aligned}
$$

farl
Line 1 $m=2$

$$
\begin{aligned}
& x=3(2)-2=4 \\
& y=5-4(2)=5-8=-3 \\
& z=1-2(2)=-3
\end{aligned}
$$

point $(4,-3,-3)$
Line 2) $t=-3$ value.

Pg 7: planes

A plane is determined by a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathrm{n}=<a, b, c>$ that is orthogonal to the plane. The vector n is called a normal vector.

Let $P(x, y, z)$ ans point os the plane.

$$
\begin{aligned}
& r=\langle x, y, z\rangle \quad r_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle \\
& r-r_{0}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle
\end{aligned}
$$

Vector equation of the plane:

Scalar equation of the plane:

$$
a x+b y+c z=a x_{0}+b y_{0}+c z_{0}
$$

Pg 8

Example: Find an equation of the plane through the point $(1,2,3)$ and is orthogonal to the vector $\langle 3,4,7\rangle$

normal vector. IJ
\qquad -

Example: Find an equation of the plane through the points $A(1,1,3), B(-1,3,2)$, and $C(1,-1,2)$.
point V
normal vectors. X

$$
\begin{aligned}
& \overrightarrow{A B}=\langle-2,2,-1\rangle \\
& \overrightarrow{A C}=\langle 0,-2,-1\rangle
\end{aligned}
$$

$$
n=\overrightarrow{A B} \times \overrightarrow{A C}=\cdots=\langle-4,-2,4\rangle
$$

Example Find an equation of the plane through the point $(1,2,3)$ and contains the line $x=2+4 t, y=1+5 t, z=-1+3 t$

Plane
point
normand vector

$$
B(2,1,-1) \frac{\text { line }}{\text { port }}
$$

$v=\langle 4,5,3\rangle$ direction vector

$$
\overrightarrow{A B}=\langle 1,-1,-4\rangle=\langle 2-1,1-2,-1-3\rangle
$$

norad vector $n=\overrightarrow{A B} \times v=\cdots=\langle 17,-19,9\rangle$

$$
\begin{gathered}
17(x-1)-19(y-2)+9(z-3)=0 \\
17 x-19 y+4 z=17(1)-19(2)+9(3) \\
17 x-19 y+9 z=6
\end{gathered}
$$

Example: You are given two different lines. Does there exist a plane that contains the given lines? If not, what conditions are needed so that there is a plane that contains the given lines?
either parallel lines on the lines Interscc!.
Skeerlines com not be in the same plane.

Definition: Two planes are parallel if their normal vectors are parallel.
Definition: Two planes are perpendicular(orthogonal) if their normal vectors are perpendicular.

Definition: The angle between two non-parallel planes is the acute angle between the normal vectors.

$$
C_{0 \leq \theta \leq \frac{\pi}{2}}
$$

$\stackrel{\rightharpoonup}{v}$

Example: Determine if the pairs of are parallel, orthogonal, or neither?
$P_{1}: \quad 4 x+2 y-8 z=15$
$P_{2}: \quad 2 x+y-4 z=12$

$$
\begin{aligned}
& n_{1}=\langle 4,2,-8\rangle \\
& n_{2}=\langle 2,1,-4\rangle \\
& n_{3}=\langle 3,2,2\rangle
\end{aligned}
$$

$n_{1}+n_{2}$ are parched
So $P_{1}+P_{2}$ are parallel
pere

$$
\begin{aligned}
n_{2} \cdot n_{3} & =2(3)+((2)+(-4)(2) \\
& =6+2+-8 \\
& =0
\end{aligned}
$$

$n_{2}+n_{3}$ are pert.
hus $n_{1}+n_{3}$ are pert
So $P_{1}+P_{2}$ are Both peep to P_{3}

Example: Find an equation of the line of intersection, L, of these two planes.

$$
\begin{aligned}
& x-y+3 z=0 \\
& n_{1}=\langle 1,-1,3\rangle \\
& x+y+4 z=2 \\
& n_{2}=\langle 1,1,4\rangle \\
& \frac{\text { find point }}{\text { let } z=0} \\
& x-y=0 \\
& \begin{array}{l}
x+y=2 \\
2 x=2
\end{array} \\
& x=1 \\
& y=1 \\
& \text { direction vector. } \\
& \text { post } A(1,1,0)
\end{aligned}
$$

$$
\begin{aligned}
x-y+3=0 \\
x+y+4=2
\end{aligned} \rightarrow \begin{aligned}
& x-y=-3 \\
& x+y=-2
\end{aligned} \overbrace{2 x=-5}^{x}=\frac{-5}{2}=-2,5 \quad \begin{array}{r}
-2,5+y=-2 \\
y=15 \\
\\
\end{array}
$$

find direction vectire

$$
\overrightarrow{A B}=\langle-3.5,-.5,1\rangle
$$

Example: Find an equation of the line of intersection, L, of these two planes.

$$
\begin{array}{ll}
x-y+3 z=0 & n_{1}=\langle 1,-1,3\rangle \\
x+y+4 z=2 & n_{2}=\langle 1,1,4\rangle
\end{array}
$$

Still need a point.

$$
(1,1,0)
$$

$$
V=n_{1} \times n_{2}=\cdots=\langle-7,-1,2\rangle
$$

The distance between a point $P(x, y, z)$ to the plane $a x+b y+c z+d=0$ is

$$
a x+b y+c z=-d
$$

Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be any point in the plane.
Let $m=\overrightarrow{p_{0} p}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle$

no pad vector $n=\langle a, b, c\rangle$

$$
\begin{aligned}
& \text { distance }=\left|\operatorname{com} p_{n} m\right|=\left|\frac{m \cdot n}{\ln \mid}\right| \\
&=\left|\frac{a\left(x-x_{0}\right)+b\left(b-y_{0}\right)+c\left(z-z_{0}\right)}{\sqrt{a^{2}+b^{2}+c^{2}}}\right| \\
&= \left.\frac{\mid a x+b y+c z-\left(a x_{0}+b_{y_{0}}+c z_{0}\right.}{-d} \right\rvert\, \\
& \sqrt{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

$$
\text { distance }=\frac{|a x+b y+c z+d|}{\sqrt{a^{2}+b^{2}+c^{2}}} \text { whee } a x+b y+c z+d=0
$$

Example: Find the distance between the point $(3,-2,7)$ and the plane $4 x-6 y+z=5$

$$
n=\langle 4,-6,1\rangle
$$

$$
\begin{aligned}
\text { Uistarie } & =\frac{|4(3)-6(-2)+(7)-5|}{\sqrt{4^{2}+(-6)^{2}+1^{2}}} \\
& =\frac{|12+12+7-5|}{\sqrt{16+36+1}}=\frac{26}{\sqrt{53}}
\end{aligned}
$$

