Section 6.3: Volume by Cylindrical Shells

Example: Find the volume of the solid obtained by rotating the region bounded by the given curves around the y-axis.

$$y = 2x - x^{2} = \times (2 - \times) = 3$$

$$x - axis$$

$$C_{i} = 1 - \sqrt{1 - y}$$

$$\int_{0}^{1} \pi \left(\left(1 + \sqrt{1 - y} \right)^{2} - \left(1 - \sqrt{1 - y} \right)^{2} \right) dy$$

Page 1: method 2

Example: Find the volume of the solid obtained by rotating the region bounded by the given curves around the y-axis.

$$y = 2x - x^2 = (2-x)x$$

 x -axis

shell method.

slice parallel to exis

of Rotation.

$$V = \int_{0}^{2} 2\pi \times (2x-x^{2}) dx = 2\pi \int_{0}^{2} (2x^{2}-x^{3}) dx$$

$$= 2\pi \left[\frac{2x^{3}}{3} - \frac{x^{4}}{4} \right]_{0}^{2} = 2\pi \left[\frac{16}{3} - \frac{14}{4} \right] = 2\pi \left(\frac{16}{3} - 4 \right)$$

$$= 2\pi \left(\frac{16}{3} - \frac{12}{3} \right) = 2\pi \left(\frac{4}{3} \right) = \frac{8\pi}{3}$$

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x-axis.

dy Integral

$$f = \frac{1}{2} = \frac{1}{2} - 0$$

$$R_{1} \mu + - Left$$

$$h = \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$$

$$y=x^{2}$$

$$y^{2}=8\times$$

$$x^{4}=8\times$$

Page 4

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around y-axis.

$$y = x^2 - 4x + 3 = (x - 3)(x - 1)$$
 $x - axis$

Use Shells. Axint

$$h = 0 - (x^2 - 4x + 3) = -x^2 + 4x - 3$$
The Botton

$$V = \int_{1}^{3} 2\pi \times (-x^{2} + 4x - 3) dx = \dots = \frac{16\pi}{3}$$

Page 5

AVV

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x-axis on the interval y = 0

to $y = \frac{\pi}{4}$

$$x = \cos(y)$$
$$x = -1$$

Shelle

As Internal

$$h = \frac{\text{Right} - \text{Left}}{\text{Cos(9)} - (-1)}$$
= Cos(9) +1

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x = 2.

$$y = x^{2} + 2$$

 $2y - x = 2$
 $x = 0$
 $x = 1$
 $25 = x$
 $5 = \frac{1}{2}$

shells. dx Integral.

$$\Gamma = 2 - \chi$$

$$L = \chi^{2} + 2 - (\frac{1}{2} \times + 1)$$

$$= \chi^{2} - \frac{1}{2} \times + 1$$

$$V = \int_{0}^{1} 2\pi r h dx = \int_{0}^{1} 2\pi (2-x) (x^{2}-\frac{1}{2}x+1) dx$$

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x = -3.

 $y = x^3$ y = 2x + 4x = 0

Shell. de Integral.

r = X - (-3) = x+3

 $h = 2x + 4 - x^3$

 $V = \int_{0}^{2} 2\pi \left(x+3 \right) \left(2x+4-x^{3} \right) dx$

