- Section 2.1: Limits
 - limits from the left and from the right
 - numerically
 - graphically
 - algebraically
 - * form of $\frac{0}{0}$
 - * form of $\frac{k}{0}$ with $k \neq 0$
- Section 2.2: Limits and asymptotes
 - Vertical asymptote
 - * rational functions
 - * logarithmic functions
 - limits to infinity (horizontal asymptotes)
 - * exponential functions
 - * rational functions
- Section 2.3: Instantaneous rate of change and the derivative
 - slope of the tangent line is the same as the instantaneous rate of change.
 - find the equation of the tangent line
 - definition of the derivative
 - nderive command on the calculator and how it is used.
- Section 2.4: Derivative rules
 - notation, $f'(x), y', \frac{dy}{dx}$
 - Derivative shortcut rules
 - * constant, power
 - $\ast\,$ sum and difference
- Section 2.5: Derivative rules
 - product rule
 - quotient rule
- Section 2.6: Continuity and non differentiability
 - definition of continuity
 - where functions are continuous and are not continuous
 - * polynomials
 - * rational functions
 - * exponential functions

- * piecewise functions
- places where f(x) is not differentiable
 - * where f(x) is not defined
 - * where f(x) is not continuous
 - * where f(x) has a sharp point(sharp turning)
 - $\ast\,$ where the tangent line is vertical
- Section 3.2: Marginal analysis
 - Notation
 - * $AC(x) = \frac{C(x)}{x}$ is the average cost function.
 - * MC(x) is marginal cost function. The derivative of the cost function.
 - * MAC(x) is the marginal average cost function. The derivative of the average cost function.
 - * The **actual** cost of A+1 item is computed by C(A+1) - C(A).
 - * The **approximate** cost of the A+1 item is computed by MC(A).
 - similar definitions for revenue and profit functions(see page 206).
- Section 4.1: Chain rule(generalized power rule)
- Section 4.2: Derivatives of logarithmic functions.
 - You only have to know the rule for natural logarithms.
 - Using logarithm rules to simplify the function before taking the derivative.
- Section 4.3: Derivative of exponential functions.
 - You only have to know the rule for base e.
- Additional topics with derivatives.
 - Being able to simplify a derivative.
 - finding the values of x where the function has a instantaneous rate of change of (pick your favorite number). To solve this take the derivative and set it equal to (your favorite number) and solve for x.
- Section 4.5: Elasticity of Demand
 - Formulas
 - * Arc elasticity, page 262.
 - * point elasticity(or just elasticity), page 265.
 - results page 267 and page 266
- Any additional topics discussed in class