Solutions to sample problems 1
5. $y-15=\frac{5}{11}(x-0)$
6. (a) $C(x)=8 x+48,000$
(b) $\$ 40$
(c) $R(x)=40 x$
(d) $P(x)=32 x-48,000$
(e) 1500 items
7. (a) equilibrium price $\$ 6$
(b) equilibrium quantity 7
8. (a) $y=-.0864 x+11.8636$
(b) see class notes.
(c) 10.5676 million cows
(d) 2014
(e) The prediction is -3.6884 million cows. Note: negative answers means the model has failed.
(f) 1933
9. There is more than one answer for this problem.
$\left[\begin{array}{lll|l}1 & 0 & 2 & 7 \\ 0 & 1 & 5 & 8\end{array}\right]$
10. There is more than one answer for this problem.
$\left[\begin{array}{lll|l}1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0\end{array}\right]$
11. There is more than one answer for this problem.

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 5 \\
0 & 0 & 0 & 8
\end{array}\right]
$$

12. (a) I) $\mathrm{x}=$ the amount invested in high-risk stocks. $\mathrm{y}=$ the amount invested in medium-risk stocks.
$\mathrm{z}=$ the amount invested in low-risk stocks.
II) $x+y+z=300,000$
$.16 x+.10 y+.04 z=33,000$
$2 x-y+2 z=0$
III) $\mathrm{x}=\$ 75,000, \mathrm{y}=\$ 200,000$, and $\mathrm{z}=$ \$25,000
(b) I) $\mathrm{x}=$ number of tank cars purchased with 6,000 gallon capacity
$\mathrm{y}=$ number of tank cars purchased with 8,000 gallon capacity
$\mathrm{z}=$ number of tank cars purchased with 18,000 gallon capacity
II) $\mathrm{x}+\mathrm{y}+\mathrm{z}=24$
$6000 \mathrm{x}+8000 \mathrm{y}+18000 \mathrm{z}=250000$
III) Parametric solution:
$\mathrm{x}=-29+5 \mathrm{z}$
$\mathrm{y}=53-6 \mathrm{z}$
$\mathrm{z}=$ any number
now to place restrictions on the parameter.
Since the number of cars has to be greater than or equal to zero.

$$
\begin{array}{ccc}
x \geq 0 & y \geq 0 & z \geq 0 \\
-29+5 z \geq 0 & 53-6 z \geq 0 & \\
5 z \geq 29 & 53 \geq 6 z & \\
z \geq 5.8 & 8.83333 \geq z & \\
& z \leq 8.83333 &
\end{array}
$$

Since the number of cars has to be less than or equal to 24 .

$$
\begin{array}{ccc}
x \leq 24 & y \leq 24 & z \leq 24 \\
-29+5 z \leq 24 & 53-6 z \leq 24 & \\
5 z \leq 53 & 29 \leq 6 z & \\
z \leq 10.6 & 4.8333 \leq z & \\
& z \geq 4.83333 &
\end{array}
$$

Now using all of the above information at the same time, we see that $5.8 \leq z \leq 8.8333$. Since we can not buy a part of a tank car, z must be an integer so the only values of z that work are $6,7,8$.
13. $\left[\begin{array}{ccc|c}3 & 6 & 15 & 9 \\ 7 & 12 & 39 & 25 \\ 2 & 6 & 5 & 4 \\ 3 & 0 & 6 & 1\end{array}\right] \quad R_{1}\left(\frac{1}{3}\right) \rightarrow R_{1}$

$$
\left[\begin{array}{ccc|c}
1 & 2 & 5 & 3 \\
7 & 12 & 39 & 25 \\
2 & 6 & 5 & 4 \\
3 & 0 & 6 & 1
\end{array}\right] \quad \begin{aligned}
& \\
& R_{2}+(-7) R_{1} \rightarrow R_{2} \\
& 3 R_{3}+(-2) R_{4} \rightarrow R_{3}
\end{aligned}
$$

$$
\left[\begin{array}{ccc|c}
1 & 2 & 5 & 3 \\
0 & -2 & 4 & 4 \\
0 & 18 & 3 & 10 \\
3 & 0 & 6 & 1
\end{array}\right]
$$

14. $x=20, y=-11, u=5$, and $z=-2$
15. $K=\left[\begin{array}{ccc}7 & -8 & 5 \\ -24.5 & 27 & -8.5 \\ 105 & -100 & 19\end{array}\right]$
16. There is more than one solution for this problem. As long as matrix A and B are not square matrices and the number of rows in matrix B is equal to the number of columns in matrix A , you will have a solution.
$A=\left[\begin{array}{lll}1 & 1 & 3 \\ 3 & 4 & 2\end{array}\right]$
$B=\left[\begin{array}{llll}1 & 2 & 4 & 6 \\ 2 & 8 & 4 & 2 \\ 1 & 4 & 5 & 6\end{array}\right]$
17. $\mathrm{D}+\mathrm{C}=$ not possible: not same dim.
$D-3 B=\left[\begin{array}{ccc}-2 & 1 & -9 \\ -1 & -3 & -1\end{array}\right]$
$D C=\left[\begin{array}{cc}1 & -6 \\ 7 & 6\end{array}\right]$
$\mathrm{DA}=$ not possible: the number of rows in A is not equal to the number of cols. in D.
$B+C^{T}=\left[\begin{array}{ccc}2 & -1 & 7 \\ -2 & 4 & 0\end{array}\right]$
B^{-1} not possible B is not square.
$A^{-1}=\left[\begin{array}{cc}1 & 0 \\ -.5 & -.5\end{array}\right]$
E^{-1} not possible, singular matrix.
18. (a) $W P=\left[\begin{array}{l}68.05 \\ 60.10\end{array}\right]$
(b) Each number represents the hourly rate for each crew. John's crew has an hourly rate of $\$ 68.05$ and Matt's crew has an hourly rate of $\$ 60.10$.
19. (a) $\mathrm{x}=-14, \mathrm{y}=39, \mathrm{z}=-9$
(b) $x=-12, y=37, z=-10$
