

"Week-in-Review"

Wir 6: Exam 2 Review

Sections 14.1, 14.3-14.8

Problem 1. Sketch the domain of $f(x,y) = \sqrt{x^2 - y}$ and describe the level curves.

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 2. Sketch the domain of $f(x,y) = \ln(y^2 + x^2 - 1)$ and describe the level curves.

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 3. What are the level surfaces to the equation f(x, y, x) = x + y + z?

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 4. $f(x,y) = \sin(x^2 + y^2)$, find all first and second partial derivatives.

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 5. Find an equation for the tangent plane to the surface $z = 2x^2 + y^2$ at the point (1,1)

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 6. Find the tangent plane to the surface 2xy + 3yz + 7xz = -9 at the point (1, 2, -1).

Math 251 – Spring 2022 "Week-in-Review"

Instructor: Dr. Rosanna Pearlstein

Problem 7. If $z = x^3y^2$, find the differential, dz, and explain what it measures.

Math 251 – Spring 2022 "Week-in-Review"

Problem 8. Consider a rectangular box with length l, width w and height h. If A is the surface area of the box, find the differential, dA.

Math 251 – Spring 2022 "Week-in-Review"

Problem 9. The height of a cone was measured to be 3 cm with a maximum error of 0.1 cm and the radius of the cone is measured to be 2 cm with a maximum error of 0.2 cm. Use differentials to estimate the maximum error in the calculated volume of the cone.

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 10. Use a linear approximation (tangent plane) to estimate $\left((2.1)^2+(0.1)^3\right)^3$

Math Learning Center

Math 251 – Spring 2022 "Week-in-Review"

Problem 11. Use differentials to approximate $\sqrt{(3.02)^2 + (1.97)^2 + (5.99)^2}$

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 12. If $z = e^{x^2 + y^2}$, $x = e^t$. $y = \cos t$, find $\frac{dz}{dt}$

Math Learning Center

Math 251 – Spring 2022 "Week-in-Review"

Problem 13. For $z=xy,\,x=\cos(st^2),\,y=\sin e^t,\,{\rm find}\,\,\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$.

Math 251 – Spring 2022 "Week-in-Review"

Problem 14. The radius and height of a circular cylinder change with time. When the height is 1 meter and the radius is 2 meters, the radius is increasing at a rate of 4 meters per second and the height is decreasing at a rate of 2 meters per second. At that same instant, find the rate at which the volume is changing

Math 251 – Spring 2022 "Week-in-Review"

Problem 15. Let $f(x,y) = \sqrt{xy}$. Find the directional derivative of f at the point P(4,1) in the direction from P to Q(6,2)

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 16. Let $f(x,y) = \sqrt{xy}$. What is the direction of the largest rate of change at the point P(4,1)?

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 17. Let $f(x,y) = e^{x+y}$. What is the maximum rate of change at the point P(-1,1)?

Math 251 – Spring 2022 "Week-in-Review"

Problem 18. For the $f(x,y) = 2x^3 - xy^2 + 5x^2 + y^2 + 5$, find all local minima, maxima, and saddle points.

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 19. Find the absolute maximum and minimum values of f(x,y) = 7 + xy - x - 2y over the closed triangular region with vertices (1,0), (5,0), (1,4).

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 20. Find the absolute maximum and minimum values of $f(x,y)=2x^3+y^4$ over the region $D=\{(x,y):x^2+y^2\leq 1\}$

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 21. Use the method of Lagrange to find the maximum and minimum values of f(x,y) = 6x + 6y subject to the constraint $x^2 + y^2 = 18$.

Instructor: Dr. Rosanna Pearlstein

Math 251 – Spring 2022 "Week-in-Review"

Problem 22. Use the method of Lagrange to find the maximum and minimum values of $f(x,y)=y^2-x^2$ subject to the constraint $\frac{1}{4}x^2+y^2=25$

Math 251 – Spring 2022 "Week-in-Review"

Problem 23. Find the volume of the largest rectangular box with faces parallel to the coordinate planes than can be inscribed in the ellipsoid $16x^2 + 4y^2 + 9z^2 = 144$.