EXAM 3 REVIEW

Exercise 1

Convert $(x, y, z)=(\sqrt{3},-1,2 \sqrt{3})$ from rectangular to cylindrical and spherical coordinates.

Exercise 2

Convert $(r, \theta, z)=(1,2 \pi / 3,-3)$ to rectangular coordinates.

Exercise 3

Convert $(\rho, \theta, \phi)=(6, \pi / 3, \pi / 6)$ to rectangular coordinates.

Exercise 4

In cylindrical coordinates, graph $z=r$. Also graph $r=\cos (\theta)$.

Exercise 5

In spherical coordinates, graph $\theta=\pi / 3$. Also graph $\phi=2 \pi / 3$.

Exercise 6

Set up but do not evaluate the following integrals. Set them up in the coordinate system you would try to actually evaluate them in.
(a) $\iint_{D} \frac{y}{x^{2}+1} \mathrm{~d} A$, where $D=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}$.
(b) $\iint_{D} x \cos (y) \mathrm{d} A$, where D is the region bounded by $y=0, y=x^{2}$, and $x=1$.
(c) $\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} \mathrm{~d} V$, where E is the portion of the unit ball in the first octant.
(d) Find the area of the region inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$.
(e) Find the volume under $z=x^{2}+3 y$ and above the triangle in the $x y$-plane with vertices $(0,0)$, $(2,0)$, and $(-1,0)$.
(f) Find the volume of the region bounded between the paraboloid $z=1+2 x^{2}+2 y^{2}$ and the plane $z=7$ in the first octant.
(g) $\iiint_{\rho=3} y^{2} x^{2} \mathrm{~d} V$, where E lies below the cone $\phi=5 \pi / 6$ and between the spheres $\rho=1$ and
(h) Find the volume of the region that is inside both the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$.
(i) $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} \mathrm{~d} V$, where E lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere
$x^{2}+y^{2}+z^{2}=16$.
(j) $\iiint_{E}(x+y+z) \mathrm{d} V$, where E is the solid under the paraboloid $z=4-x^{2}-y^{2}$, above the $x y$-plane, and on the positive x side of the plane $x=0$.

Exercise 7

Evaluate the following.
(a) $\int_{0}^{1} \int_{x^{2}}^{1} \sqrt{y} \sin (y) \mathrm{d} y \mathrm{~d} x$
(b) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{-x^{2}-y^{2}} \mathrm{~d} y \mathrm{~d} x$

Exercise 8

Find the mass of a ball of radius 3 if its density is proportional to the distance from the center of the ball. (Assume that the constant of proportionality is 1.) [Note: not all instructors covered this topic.]

