Week 11 Week in Review

courtesy: David J. Manuel
(covering 11.8 and 11.9)
(Problems with a * beside them will also be done in Python)

$1 \quad$ Section 11.8

1. Find the radius and interval of convergence of the following power series:
(a) $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{5^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n+1)!} *$
(c) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x+3)^{n}}{2^{n} \sqrt{n^{3}+1}}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 x-1)^{n}}{\sqrt{n}} *$
(f) $\sum_{n=0}^{\infty} \frac{(x+1)^{n}(2 n+1)!}{10^{n} n!}$
(g) $\sum_{n=0}^{\infty} \frac{x^{n}}{2 e^{n}+5} *$
2. Suppose that $\sum_{n=0}^{\infty} c_{n}(x+1)^{n}$ converges when $x=2$ and diverges when $x=-5$.
(a) Find all values of x for which you know the series converges.
(b) Find all values of x for which you know the series diverges.

2 Section 11.9

1. Write a power series (centered at $a=0$) for the following functions
(a) $f(x)=\ln (1+x)$
(b) $f(x)=\frac{1}{9-4 x^{2}}$
(c) $f(x)=\frac{6 x}{\left(1+3 x^{2}\right)^{2}}$
2. Given $y=\sum_{n=0}^{\infty} c_{n} x^{n}$, the expression $y^{\prime \prime}+x y^{\prime}+y$ can be written in the form $C_{0}+\sum_{n=1}^{\infty} C_{n} x^{n}$, where the C_{k} terms depend on n and c_{j} for different values of j. Find an expression for C_{0} and C_{n}.
