

## Week 11 Week in Review

courtesy: David J. Manuel

(covering 11.8 and 11.9)

(Problems with a \* beside them will also be done in Python)

## 1 Section 11.8

1. Find the radius and interval of convergence of the following power series:

(a) 
$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{5^n}$$
  
(b) 
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}x^{2n}}{(2n+1)!} *$$
  
(c) 
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$$
  
(d) 
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+3)^n}{2^n \sqrt{n^3+1}}$$
  
(e) 
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2x-1)^n}{\sqrt{n}} *$$
  
(f) 
$$\sum_{n=0}^{\infty} \frac{(x+1)^n (2n+1)!}{10^n n!}$$
  
(g) 
$$\sum_{n=0}^{\infty} \frac{x^n}{2e^n + 5} *$$



- (a) Find all values of x for which you know the series converges.
- (b) Find all values of x for which you know the series diverges.

## 2 Section 11.9

- 1. Write a power series (centered at a = 0) for the following functions
  - (a)  $f(x) = \ln(1+x)$ (b)  $f(x) = \frac{1}{9-4x^2}$ (c)  $f(x) = \frac{6x}{(1+3x^2)^2}$
- 2. Given  $y = \sum_{n=0}^{\infty} c_n x^n$ , the expression y'' + xy' + y can be written in the form  $C_0 + \sum_{n=1}^{\infty} C_n x^n$ , where the  $C_k$  terms depend on n and  $c_j$  for different values of j. Find an expression for  $C_0$  and  $C_n$ .