

Week 9 & 10 Week in Review

courtesy: David J. Manuel

(covering 11.3, 11.4, 11.5, and 11.6)

(Problems with a * beside them will also be done in Python)

1 Section 11.3-11.6

1. Determine if the following series converge or diverge. Clearly show the series satisfies the conditions of the test you use.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$$

(b) $\sum_{n=1}^{\infty} \frac{n}{n+1}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n(2n+1)}$
(d) $\sum_{n=1}^{\infty} \frac{n^{100}}{n!} *$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n (n^2+1)}{2^n}$
(f) $\sum_{n=2}^{\infty} \frac{(-1)^n \ln(n)}{n^2}$
(g) $\sum_{n=2}^{\infty} \frac{(-1)^n \ln(n)}{n^2}$
(h) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$
(i) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1} - \frac{n-1}{n}\right)$
(j) $\sum_{n=1}^{\infty} \frac{n+e^{-2n}}{n^2-e^{-n}} *$

- 2. Given the series $\sum_{n=1}^{\infty} n e^{-n^2}$
 - (a) Estimate the maximum possible error when using s_5 to approximate the sum of the series.
 - (b) How many terms of the series (N) are needed to guarantee that the partial sum S_N is within .005 $\left(\frac{1}{200}\right)$ of the sum of the series.

3. Given the series
$$\sum_{n=0}^{\infty} (-1)^n n e^{-n^2}$$

- (a) Estimate the maximum possible error when using s_5 to approximate the sum of the series.
- (b) STATE the inequality needed to find the minimum value of N to guarantee that the partial sum S_N is within 10^{-6} of the sum of the series. *