texas A\&m university Math Learning Center

Week 8 Week in Review

courtesy: David J. Manuel
(covering 11.2, 11.3, and Exam II Review)

1 Section 11.2

1. Determine if the following series converge or diverge. If they converge, find their sum.
(a) $\sum_{n=1}^{\infty}\left(\cos \left(\frac{1}{n+2}\right)-\cos \left(\frac{1}{n}\right)\right)$
(b) $\sum_{n=1}^{\infty} \frac{3 n}{5 n+4}$
(c) $\sum_{n=0}^{\infty} \frac{(-2)^{n}+3^{2 n}}{10^{n}}$
2. The series $\sum_{n=1}^{\infty} a_{n}$ has partial sums given by $s_{N}=\frac{N}{3 N+1}$.
(a) Find a_{2023} (you do NOT have to simplify your answer)
(b) Determine if the series converges or diverges. If it converges, find the sum.

2 Exam II Review

1. Evaluate the following integrals:
(a) $\int\left(\tan ^{3} x\right)\left(\sec ^{5} x\right) d x$
(b) $\int \frac{d x}{x^{4} \sqrt{x^{2}-4}}$
(c) $\int \frac{7 x^{2}+3 x+11}{(x+1)\left(x^{2}+4\right)} d x$
(d) $\int_{-\infty}^{0} z e^{3 z} d z$
(e) $\int_{0}^{4} \frac{d x}{\sqrt{x}}$
2. Determine whether $\int_{1}^{\infty} \frac{d x}{x-e^{-5 x}}$ converges or diverges (you do NOT have to compute the integral if it converges).
3. Determine whether the following sequences converge or diverge. If a sequence converges, find the limit; if a sequence diverges, explain why.
(a) $a_{n}=\ln \left(100 n^{2}+5\right)-2 \ln (5 n+1)$
(b) $a_{n}=\frac{(-1)^{n} 3 n}{n+1}$
(c) $a_{n}=\frac{(-1)^{n} 3}{n+1}$
(d) $a_{n}=\left(\sqrt{n^{2}+5 n+1}-n\right)$
4. It can be shown that the sequence defined recursively by $a_{1}=3, a_{n+1}=\sqrt{6 a_{n}-5}$ is increasing.
(a) Explain briefly what else you need to know to guarantee that the sequence converges and why.
(b) Assuming your answer to (a) is true, find the limit.
