

Week 7 Week in Review

courtesy: David J. Manuel

(covering 7.8 and 11.1)

(Problems with a * beside them will also be done in Python)

1 Section 7.8

1. Determine if the following integrals are convergent or divergent, and evaluate if convergent.

(a)
$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

(b)
$$\int_{-1}^{1} \frac{dx}{x^{2}}$$

(c)
$$\int_{1}^{\infty} \frac{\ln(x)}{x^{2}} dx^{*}$$

(d)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x^{2} + 4x}} dx$$

2. Determine if the integral $\int_{1}^{\infty} \frac{dx}{\sqrt{x} + e^{2x}}$ converges or diverges (with justification), but do not evaluate if convergent.

2 Section 11.1

- 1. Determine if the following sequences converge or diverge. If they converge, state the limit (with justification). If they diverge, explain why.
 - (a) $a_n = 2\ln(3n+5) \ln(4n^2+1)$ (b) $a_n = (5+e^n)^{1/(5n)} *$ (c) $a_n = \frac{(-1)^n(2n^2+2)}{3n^2+1} *$ (d) $a_n = \frac{\sin(n^4)}{n^3}$ (e) $a_n = \frac{(-1)^n n^2}{7n^3+1}$

2. Determine if the following sequences are increasing, decreasing, or neither:

(a)
$$a_n = e^{-n}$$

(b) $a_n = \left(-\frac{1}{2}\right)^n$
(c) $a_n = 1 - \frac{1}{n^2}$

- 3. Determine which of the following sequences are bounded:
 - (a) $a_n = e^{-n}$
 - (b) $a_n = \cos(n)$
 - (c) $a_n = \ln(n)$

4. Given the sequence defined recursively by $a_1 = 2$, $a_{n+1} = 5 - \frac{4}{a_n}$:

- (a) State a_2 , a_3 , and a_4^*
- (b) Assuming (correctly) that the sequence converges, find the limit.