

Week 2 in Review

courtesy: David J. Manuel

(covering 6.1 and 6.2)

(Problems with a * beside them will also be done in Python)

1 Section 6.1

- 1. Find the area of the region(s) enclosed by the following curves:
 - (a) $f(x) = x^2 + 1$, $g(x) = 3 x^2$, x = 0, x = 2
 - (b) $x = 0, x = 1 + y^2, y = 1, y = 3$
 - (c) The parabola $f(x) = x^2$, the x-axis, and the line tangent to f at the point (1,1). *
 - (d) $y = \sin(x), y = \cos(x), x = 0, x = \pi$
 - (e) $y = \ln(x)$, the x-axis, the y-axis, and y = 2
- 2. Write an integral which represents the area shaded in the figure below. Use actual functions for f and g.

2 Section 6.2

- 1. Find the volume of the solid formed by rotating the given region about the given line:
 - (a) $y = x^2, y = 4$, about the x-axis
 - (b) $x = 2y^3, x = 4y^2$, about the y-axis
 - (c) $x = 2y^3, x = 4y^2$, about the line y = -2 (SET UP the integral only!) *
 - (d) $x = 0, y = 2\sin(x), y = \sec(x)$ about the x-axis *
 - (e) The region described in #1e in the section above about the line x = -1
- 2. Find the volume of the solid whose base is the ellipse $x^2 + \frac{y^2}{4} = 1$ and whose cross-sections perpendicular to the *x*-axis are squares.
- 3. DERIVE the formula for the volume of a cone of radius R and height H.