Week 2 in Review

courtesy: David J. Manuel

(covering 6.1 and 6.2)
(Problems with a * beside them will also be done in Python)

1 Section 6.1

1. Find the area of the region(s) enclosed by the following curves:
(a) $f(x)=x^{2}+1, g(x)=3-x^{2}, x=0, x=2$
(b) $x=0, x=1+y^{2}, y=1, y=3$
(c) The parabola $f(x)=x^{2}$, the x-axis, and the line tangent to f at the point $(1,1)$. *
(d) $y=\sin (x), y=\cos (x), x=0, x=\pi$
(e) $y=\ln (x)$, the x-axis, the y-axis, and $y=2$
2. Write an integral which represents the area shaded in the figure below. Use actual functions for f and g.

$2 \quad$ Section 6.2

1. Find the volume of the solid formed by rotating the given region about the given line:
(a) $y=x^{2}, y=4$, about the x-axis
(b) $x=2 y^{3}, x=4 y^{2}$, about the y-axis
(c) $x=2 y^{3}, x=4 y^{2}$, about the line $y=-2$ (SET UP the integral only!) *
(d) $x=0, y=2 \sin (x), y=\sec (x)$ about the x-axis *
(e) The region described in $\# 1 \mathrm{e}$ in the section above about the line $x=-1$
2. Find the volume of the solid whose base is the ellipse $x^{2}+\frac{y^{2}}{4}=1$ and whose cross-sections perpendicular to the x-axis are squares.
3. DERIVE the formula for the volume of a cone of radius R and height H.
