

Week 14 Week in Review

courtesy: David J. Manuel

(covering 10.1, 10.2, and 10.3)

1 Section 10.1

- 1. Given the curve parametrized by $x = \sin(t)$, $y = t^3$, find parametric equations for the line tangent to the curve at $t = \pi$.
- 2. Find the intersection of the lines parametrized by x = 3 + 2t, y = 2 + t and x = 1 s, y = 1 + 3s. Are the lines parallel, perpendicular, or neither? Justify your answers WITHOUT finding the Cartesian equations of the lines.
- 3. Find the horizontal and vertical tangent lines to the curve parametrized by $x = t^2 4t$, $y = t^2 6t$.

2 Section 10.2

- 1. Find the length of the curve parametrized by $x = (\sin(t))^2$, $y = (\cos(t))^2$, $t \in \left[0, \frac{\pi}{3}\right]$.
- 2. Find the length of the curve parametrized by $x = \frac{\sqrt{2}}{3}t^{3/2}, y = t + 27, t \in [0, 6]$
- 3. Find the length of the curve parametrized by $x = 1 + e^{-t} \cos(t), y = e^{-t} \sin(t)), t \in [0, \infty)$
- 4. Find the area of the surface formed by rotating the curve parametrized by $x = t^2$, $y = t^3$, $t \in [0, 1]$ about the *y*-axis.
- 5. Find the area of the surface formed by rotating the curve parametrized by $x = t \ln(t)$, $y = 4\sqrt{t}$, $t \in [1, 4]$ about the x-axis.

3 Section 10.3

- 1. Convert the following points between Cartesian and polar coordinates:
 - (a) (0,2) from Cartesian to polar
 - (b) $(-2, -2\sqrt{3})$ from Cartesian to polar
 - (c) $\left(4,\frac{3\pi}{4}\right)$ from polar to Cartesian
 - (d) $\left(-5, \frac{\pi}{2}\right)$ from polar to Cartesian

- 2. Sketch the graph of the polar curve $r = 1 + \sin(\theta)$
- 3. Given the polar curve $r = 4\sin(\theta)$:
 - (a) Sketch the graph
 - (b) Find the Cartesian equation
- 4. Given the Cartesian curve $2(x^2 + y^2)^2 = 25(x^2 y^2)$
 - (a) Find the polar equation of the curve
 - (b) Sketch the graph

4 Section 10.4

1. Find the area enclosed by the cardioid $r = 9 - \cos(\theta)$.

2. Find the area of one leaf of the four-petal rose $r = 9\sin(2\theta)$.

- 3. Find the length of the polar curve $r = 11\theta^2$ for $\theta \in [0, \pi]$.
- 4. Find the length of the spiral $r = e^{\theta}$ for $\theta \in [0, 2\pi]$.