MATHEMATICS
TEXAS A\&M UNIVERSITY

Instructor: Rosanna Pearlstein

Math 152 - Fall 2022 "Week-in-Review"

Exam2 WIR

Problem 1. Compute the integral $\int \frac{d x}{x^{2} \sqrt{x^{2}-1}}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 2. Compute the integral $\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x$.

Problem 3. Compute the integral $\int \sqrt{-x^{2}+6 x+7} d x$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 4. Compute the integral $\int_{2}^{3} \frac{x^{3}+1}{x^{2}(x-1)}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 5. Compute the integral $\int \frac{x+1}{x^{2}-4}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 6. Compute the integral $\int \frac{2 x^{2}-x+4}{x^{3}+4 x}$.

Math 152 - Fall 2022 "Week-in-Review"
Problem 7. Compute the integral $\int_{e}^{\infty} \frac{d x}{x(\ln x)^{2}}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 8. Compute the integral $\int_{1}^{9} \frac{1}{\sqrt[3]{x-9}} d x$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 9. Compute the integral $\int_{-1}^{2} \frac{1}{x^{4}} d x$.

AIM Math Learning Center
Math 152 - Fall 2022 "Week-in-Review"

Problem 10. Determine whether the integral converges: $\int_{1}^{\infty} \frac{1}{x+e^{2 x}} d x$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 11. Determine whether the integral converges: $\int_{5}^{\infty} \frac{x}{x^{3 / 2}-x-1} d x$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 12. Determine whether the sequence converges (if it does, find the limit) $a_{n}=\ln (3 n+$ 1) $-\ln \left(4 n^{2}\right)$.

Problem 13. Determine whether the sequence converges (if it does, find the limit) $a_{n}=$ $(-1)^{n} \frac{n}{n+1}$.

Problem 14. Determine whether the sequence converges (if it does, find the limit) $a_{n}=$ $(-1)^{n} \frac{n}{n^{2}+1}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 15. Determine whether the sequence converges (if it does, find the limit) $a_{n}=$ $\sqrt{n^{2}-8 n}-n$.

Problem 16. Consider the recursive sequence defined by $a_{1}=2, a_{n+1}=1-\frac{1}{a_{n}}$. Find the first 5 terms of the sequence. Find the limit of the sequence, if it exists.

Math 152 - Fall 2022 "Week-in-Review"

Problem 17. Given the recursive sequence below is increasing and bounded, find the limit. $a_{1}=2, a_{n+1}=4-\frac{3}{a_{n}}$.

Problem 18. Use the Test For Divergence to show the series diverges:

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{3(n+1)(n+2)}
$$

Explain why the Test for Divergence is inconclusive when applied to the series $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$.
mathematics
TEXAS A\&M UNIVERSITY
ATM Math Learning Center
Math 152 - Fall 2022 "Week-in-Review"

Problem 19. Find the sum of the series: $\sum_{n=1}^{\infty}\left(\sin \frac{1}{n}-\sin \frac{1}{n+1}\right)$

Instructor: Rosanna Pearlstein

Math 152 - Fall 2022 "Week-in-Review"

Problem 20. Find the sum of the series: $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 21. Find the sum of the series: $\sum_{n=1}^{\infty} 2\left(\frac{5}{7}\right)^{n-1}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 22. Find the sume of the series: $\sum_{n=1}^{\infty} \frac{3^{2 n+1}}{10^{n}}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 23. Determine whether the following series converges or diverges: $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 24. Determine whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{\sqrt{n+1}}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 25. Determine whether the following series converges or diverges: $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{3 n-1}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 26. Determine whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{3}+1}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 27. Determine whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{\cos \left(\frac{1}{n}\right)}{n^{2}}$.

Math 152 - Fall 2022 "Week-in-Review"

Problem 28. Determine whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{(-10)^{n} n!}{(2 n+1)!}$

In the problem below, the "-1" is a typo, we will solve replacing " -1 " by " +1 ".
Problem 29. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{5}}$. Use the first 5 terms to estimate the sum. Estimate the error in the approximation s_{5} to the sum of the series. How many terms do you need to take in order to ensure an approximation to within .01?

