Choosing a Series Convergence Test

SERIES-TESTS FOR CONVERGENCE

- 1. Geometric series: The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges if |r| < 1 and diverges if $|r| \ge 1$. If |r| < 1, then the sum is $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$.
- 2. The Integral Test: If f(x) is a positive, continuous, decreasing function on $[1, \infty]$, and $a_n = f(n)$. Then:
 - a.) If $\int_1^\infty f(x) dx$ is convergent, then $\sum_{n=1}^\infty a_n$ converges.
 - b.) If $\int_1^\infty f(x) dx$ diverges, then $\sum_{n=1}^\infty a_n$ diverges.
- 3. The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$
- 4. The Comparison Test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{i=1}^{\infty} b_n$ are series of positive terms.
 - a.) If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also convergent.
 - b.) If $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \geq b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also divergent.
- 5. The Limit Comparison Test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series of positive terms.
 - a.) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then either both series converge or both diverge.
 - b.) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ also converges.
 - c.) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ also diverges.

When to use the limit comparison test: When $\sum_{n=1}^{\infty} a_n$ is a series involving powers of n, look at the leading term in the numerator and denominator and "ignore" all other powers of n. Simplify this expression. The result is $\sum_{n=1}^{\infty} b_n$. Use this series to apply the limit comparision test. [NOTE: $\sum_{n=1}^{\infty} b_n$ is almost always a p-series].

example 1:
$$\sum_{n=1}^{\infty} \frac{n^3 + 50n}{n^5 + \sqrt{n}}$$
. Use $b_n = \frac{n^3}{n^5} = \frac{1}{n^2}$

example 2:
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^5 + n^2 + 1}}$$
 Use $b_n = \frac{n}{\sqrt{n^5}} = \frac{1}{n^{3/2}}$

- 6. The Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ satisfies
 - a.) $a_{n+1} \leq a_n$ for all n (ie the sequence a_n is decreasing).
 - b.) $\lim_{n\to\infty} a_n = 0$

then the series converges.

When to use the alternating series test: When you have an alternating series!

7. The Ratio Test:

The Ratio Test:
a.) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).

b.) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

c.) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, then the test fails.

When to use the ratio test: Use the ratio test if the series involves n! or numbers raised to the n^{th} power, such as 2^n or 5^{n+1} ...NEVER USE THE RATIO TEST IF THE SERIES ONLY INVOLVES POWERS OF n. (Why??) Try it and see what happens. You should always get 1 as the limit. in which case the test fails. REMEMBER: If the series only involves powers of n and the series is a series of positive terms, use the limit comparision test.

8. The Test for Divergence If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges. NOTE: The converse is NOT true: If $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ does NOT NECESSARILY CONVERGE! For example the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, however the TERMS do go to zero-just not fast enough to get a finite SUM.

9. Remainder formulas:

$$R_n \le \int_n^\infty f(x) \, dx$$
 $|R_n| \le a_{n+1}$