Week in Review \#8

1. Let X be the amount paid out on a claim then the probability distribution is

X	500	100	0
prob	.1	.4	.5

$E(x)=500 * .1+100 * .4+0 * .5=90$
2. Let X be the net winnings and let A be the cost of the game.

X	$12-\mathrm{A}$	$5-\mathrm{A}$	$2-\mathrm{A}$	0	-A
prob.	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	$\frac{3}{8}$

Want $E(X)=0$. Solve this equation for A.
Answer: $\mathrm{A}=\$ 3$
3. Type the values of X into L_{1}, the frequency (cars) into L_{2}, and then compute
1-Var Stats L_{1}, L_{2}
(a) mean $=3.3140$
(b) median $=3$
(c) mode $=3$
(d) $\mathrm{E}(\mathrm{x})=3.3140$

This is a sample. If your instructor did not talk about data being a sample then use the population results.
(e) sample variance $=3.3698$
population variance $=3.3661$
(f) sample st. dev. $=1.8357$
population st. dev. $=1.8347$
4. Type the values of X into L_{1}, the frequency(students) into L_{2}, and then compute
1-Var Stats $\mathrm{L}_{1}, \mathrm{~L}_{2}$
(a) mean $=2.995$
(b) median $=3$
(c) mode $=2$ and 3
(d) $\mathrm{E}(\mathrm{x})=2.995$

This data is a population since the entire class is surveyed
5. Compute the expected number of houses sold with each company, $E(A)=18.56 E(B)=$ 11.57 , and then multiply by the average price of each house and by 0.03 to get the expected commission.

Company A: $18.56 * 98000 * 0.03=54566.40$
Company B: $11.57 * 150000 * 0.03=52065$
Answer: company A since its expected commission is larger than company B .
6. $\frac{P(E)}{P\left(E^{C}\right)}=\frac{1-.8}{.8}=\frac{.2}{.8}=\frac{1}{4}$.

Answer: 1 to 4 .
7. The odds against event A are 23 to 2 can be restated as the odds in favor of A are 2 to 23 . These odds say that for every 2 times A occur there will be 23 times that it does not occur. Hence $P(A)=\frac{2}{2+23}=\frac{2}{25}$
8. a Chebychev's problem.
first find the value of k .
$\mu+k \sigma=24+k * 3=28$ or $k=\frac{4}{3}$
The prob. that the hair dryers will last between 20 and 28 months is $\geq 1-\frac{1}{\left(\frac{4}{3}\right)^{2}}=\frac{7}{16}$
9. a Chebychev's problem.
first find the value of k .
$\mu+k \sigma=36+k * 4=42$ or $k=1.5$
The prob. that the product will last between 30 months and 42 months is
$\geq 1-\frac{1}{1.5^{2}}=0.5555555555=\frac{5}{9}$
The number of items will be at least $9000 * \frac{5}{9}$ or at least 5000 items
10. (a) This part is not a binomial problem since which trials are success and which are failures are specified. Use a tree to get this answer.
$\frac{2}{5} \frac{2}{5} \frac{2}{5} \frac{3}{5}=\left(\frac{2}{5}\right)^{3} *\left(\frac{3}{5}\right)^{2}$
(b) $\mathrm{n}=5, \mathrm{p}=\frac{2}{5}, \mathrm{r}=4$ binompdf $(5,0.4,4)=0.0768$
(c) $\mathrm{n}=5, \mathrm{p}=\frac{2}{5}, \mathrm{r}=2,3,4$
binompdf($5,0.4,2)+$ binompdf $(5,0.4,3)+$ binompdf($5,0.4,4$)
or binomcdf($5,0.4,4$) - binomcdf($5,0.4,1$)
Answer: 0.6528
(e) population variance $=3.4251$
(f) population st. dev. $=1.8507$
11. note: $p=$ probability of success. convert the number of failures to the number of success. one failure means 4 success; 2 failures means 3 success;
$\mathrm{n}=5, \mathrm{p}=\frac{3}{7}, \mathrm{r}=0,1,2,3,4$
$\operatorname{binomcdf}\left(5, \frac{3}{7}, 4\right)$
Answer: 0.9855
12. (a) $\mathrm{n}=25, \mathrm{p}=\frac{1}{6}, \mathrm{r}=0,1,2,3,4$
binomcdf $\left(25, \frac{1}{6}, 4\right)$
Answer: 0.5937
(b) $\mathrm{n}=25, \mathrm{p}=\frac{2}{6}, \mathrm{r}=7,8,9, \ldots, 25$
$\operatorname{binomcdf}\left(25, \frac{2}{6}, 25\right)-\operatorname{binomcdf}\left(25, \frac{2}{6}, 6\right)$
Answer: 0.7785
(c) For a binomial the expected value has a
shortcut: $E(X)=n p$
Answer: $25 * \frac{2}{6}=8.33333$
(d) For a binomial the standard deviation has a shortcut: $\mu=\sqrt{n p q}$
Answer: $\sqrt{25 * \frac{2}{6} * \frac{4}{6}}=2.357022$
(e) Since the first three rolls are multiples of three, this means the number of trials is actually 22 and we need at least 4 of the remaining 22 rolls to be a multiple of three.
$\mathrm{n}=22, \mathrm{p}=\frac{2}{6}, \mathrm{r}=4,5,6, \ldots, 22$
1 - binomcdf $\left(22, \frac{2}{6}, 3\right)$
Answer: 0.9649
13. (a) $\mathrm{n}=80, \mathrm{p}=0.15, \mathrm{r}=5$
binompdf($80,0.15,5$)
Answer: 0.0092856
(b) $\mathrm{n}=80, \mathrm{p}=0.15, \mathrm{r}=0,1,2, \ldots, 15$
binomcdf($80,0.15,15)$
Answer: 0.862466
(c) break into two parts.
$\mathrm{n}=80, \mathrm{p}=0.15, \mathrm{r}=5,6,7,8,9,10$
binomcdf($80,0.15,10)-\operatorname{binomcdf}(80,0.15,4)$
first part: 0.32522
$\mathrm{n}=80, \mathrm{p}=0.15, \mathrm{r}=20,21,22, \ldots 30$
binomcdf($80,0.15,30$)
binomcdf($80,0.15,19)$
second part: 0.01315
Final Answer: $0.32522+0.01315=0.33837$
(d) $\mathrm{E}(\mathrm{X})=80^{*} .15=12$
(e) $\mathrm{n}=70$ (since we know the results of the first

10 people)
$\mathrm{p}=0.015$
since 5 people of the first 10 had a reaction, we only need 12 more people to get a total of 17 .
$\mathrm{r}=12$
binompdf($70,0.15,12$)
Answer: 0.1112

