Week in Review-Additional Material sections 8.5 and 8.6

1. (a) normalcdf $(0.3,1.83,0,1)=0.3485$
(b) normalcdf(-1E99,1.5,0,1) $=0.9332$
(c) 0
2. (a) $\mathrm{A}=\operatorname{invNorm}(.68,0,1)=0.4677$
(b) since 48% of the area is between $-B$ and B, this means that due to symmetry and the fact all probability adds up to one each outside piece is 26%, see the figure.

$$
\mathrm{B}=\operatorname{invNorm}(.48+.26,0,1)=0.6433
$$

3. $z=\frac{x-\mu}{\sigma}=\frac{38-43}{4}=-1.25$
4. 1.3 standard deviations above the mean gives $x=83+1.3 * 5=89.5$
$P(X<89.5)=$ normalcdf(-1E99, 89.5,83,5) $=0.9032$

Answer: 90.32%
5. (a) normalcdf $(32,53,40,8)=0.7893$
(b) normalcdf $(45,1 \mathrm{E} 99,40,8)=0.2660$
(c) invNorm(1-.75,40,8) $=34.6041$
6. (a) $\operatorname{normalcdf}(35000,1 \mathrm{E} 99,40000,2000)=0.9938$
(b) $800 * 0.9938=795.0322$ so approximately 795
(c) normalcdf $(38000,44000,40000,2000)=0.8186$
(d) This is a binom problem with success being a tire having a tread life between 38,000 and 44,000 miles. $\mathrm{N}=4, \mathrm{p}=0.8186$ (from part c), and $\mathrm{r}=4$.
binompdf(4, 0.8186,4)
Answer: 0.4490
(e) This is a binom problem with success being a tire having a tread life between 38,000 and 44,000 miles. $\mathrm{N}=4, \mathrm{p}=0.8186$ (from part c), and $\mathrm{r}=3$.
binompdf(4, 0.8186,3)
Answer: 0.3980
7. (a) normalcdf(-1E99, $7.2,8,0.5)=0.0548$
(b) $0.0548 * 300=16.44$ so approximately 16 .

There are two different styles when approximating the Binomial Distribution. Be sure that your USE THE STYLE TAUGHT BY YOUR INSTRUCTOR.

METHOD A: This is the method that is found in the textbook. All of these answers are computed using the 0.5 adjustment factor.
8. Use the normal approximation to solve this problem. $\mathrm{N}=4000, \mathrm{p}=.2 \mathrm{r}=0,1, \ldots, 749$

$$
\mu=n p=4000 * .2 \quad \sigma=\sqrt{4000 * .2 * .8}
$$

$\operatorname{normalcdf}(-1 E 99,749.5,4000 * .2, \sqrt{4000 * .2 * .8})=0.0230$
9. $\mathrm{N}=5000, \mathrm{p}=0.03$ so $\mu=n p=5000 * .03 \quad \sigma=\sqrt{5000 * .03 * .97}$
(a) $\mathrm{r}=115,116,117, \ldots, 180$
$\operatorname{normalcdf}(114.5,180.5,5000 * .03, \sqrt{5000 * .03 * .97})=0.9926$
(b) $\mathrm{r}=141,142, \ldots 5000$
$\operatorname{normalcdf}(140.5,1 E 99,5000 * .03, \sqrt{5000 * .03 * .97})=0.7845$

METHOD B: This method is NOT found in the textbook. ONLY USE IT IF YOUR INSTRUCTOR HAS TAUGHT IT IN CLASS.
8. Use the normal approximation to solve this problem. $\mathrm{N}=4000, \mathrm{p}=.2 \mathrm{r}=0,1, \ldots, 749$

$$
\mu=n p=4000 * .2 \quad \sigma=\sqrt{4000 * .2 * .8}
$$

normalcdf($-1 E 99,749,4000 * .2, \sqrt{4000 * .2 * .8})=0.0219$
9. $\mathrm{N}=5000, \mathrm{p}=0.03$ so $\mu=n p=5000 * .03 \quad \sigma=\sqrt{5000 * .03 * .97}$
(a) $\mathrm{r}=115,116,117, \ldots, 180$
normalcdf($115,116,5000 * .03, \sqrt{5000 * .03 * .97})=0.9917$
(b) $\mathrm{r}=141,142, \ldots 5000$
$\operatorname{normalcdf}(141,1 E 99,5000 * .03, \sqrt{5000 * .03 * .97})=0.7722$

