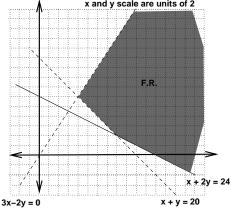
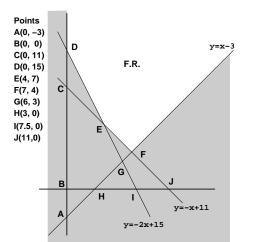
Week in Review #4

Section 3.1: Graphing Systems of Linear Inequalities in Two Variables. Section 3.3: Graphical solution of Linear Programing Problem.

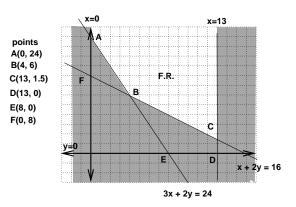
- Method of corners
 - graph the feasible region
 - find corner points
 - evaluate the objective function at each corner point
 - solution can be at one point or infinitely many points if two adjacent corner points maximize or minimize the objective function.
- 1. Write the system of inequalities that will give the shaded feasible region.



- 2. Find the maximum of F = 4x + 2y and the location of its maximum subject to:
 - $5x + 2y \ge 20$ $x + 2y \ge 8$ $x + 4y \le 32$ $x \ge 0, y \ge 0$
- 3. Use the Feasible region to find where is the objective function g = 2x + y minimized and the minimum value of g?



- 4. Use the Feasible region to find the indicated results for these objective functions.
 - (a) maximum value of h = 10x 3y and the location(s) of the maximum value.
 - (b) maximum value of j = 3x + 4y and the location(s) of the maximum value.



Section 6.1: Set and Set Operations.

- a set is a well defined collection of objects
 - x is an element of set A, $x \in A$, if x is an object in A.
- roster notation: $A = \{1, 2, 3\}$
- set builder notation: $B = \{x \mid x \text{ is a positive integer }\}$
- set A and B are equal if they have exactly the same elements.
- Subset, $A \subseteq B$
 - A is a subset of B if every element in A is also an element of B
 - A is a proper subset, $A \subset B$, if A is a subset of B but is not equal to B.
- Empty set, $\phi = \{\}$, is a set that contains no elements
- Universal set, U, is the set that contains all of the elements possible in a problem.
- Set operations
 - Union, $A \cup B$
 - Intersection, $A \cap B$
 - Compliment, A^C
- n(A) denotes the number of things in set A, $n(\phi) = 0$
- Set A and B are **disjoint** provided that $A \cap B = \phi$
- 5. Write the set $\{x \mid x \text{ is a letter in the word ENCYCLOPEDIA}\}$ in roster notation.
- 6. U={ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, A = { 0, 3, 6, 9}, B={ 0, 2, 4, 6, 8}, and C={ 1, 3, 5, 7, 9} Find the following.
 - (a) n(A) =
 - (b) $n(A \cup B) =$ (f) How many subsets does B have?
 - (c) $A \cup C^C =$ (g) How many proper subsets does B have?
 - (d) $A \cap B \cap C =$ (h) Are A and B disjoint?
 - (a) $A \cap B \cap C =$ (b) $A \cap C \cap C \cap B =$ (c) $A \cap C \cap C \cap B =$
- 7. Shade the following

(a) $A \cup B \cup C$	(b) $(B \cup C)^C$	(c) $(A^C \cap B) \cup C$
8. U = the set of A & M = $\{ x \in U x \text{ is m} F = \{ x \in U x \text{ is fer} \}$	ale}	$D = \{ x \in U x \text{ drinks Dr. Pepper} \}$ $S = \{ x \in U x \text{ drinks Sprite} \}$ $C = \{ x \in U x \text{ drinks coffee} \}$

- (a) Describe each of the given sets in words.
 - i. $S \cup C^C$
 - ii. $M \cap (D \cup S)$
- (b) Write the set(use set notation) that represents each of the given statements.
 - i. The female students at A& M that drink sprite but do not drink coffee.
 - ii. The students at A& M that drink coffee or do not drink Dr. Pepper.